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ABSTRACT

In recent years, the advances in technology have produced datasets of increasing size,
not only regarding the number of samples but also the number of features. Unfortunately,
despite these advances, creating a sufficiently large amount of properly labeled data with enough
examples for each class is not an easy task. Organizing and labeling such data is challenging,
expensive, and time-consuming. Also, it is usually done manually, and people can label with
different formats and styles, incorporating noise and errors to the dataset. Hence, there is a
growing interest in semi-supervised learning, since, in many learning tasks, there is a plentiful
supply of unlabeled data, but insufficient labeled ones. Therefore, at the current stage of research,
it is of great importance to put forward semi-supervised learning models aiming to combine
both types of data, in order to benefit from the distinct information they can provide, to obtain
better performances of both clustering and classification tasks, that would expand the range of
machine learning applications. Moreover, it is also important to develop methods that are easy
to parameterize in a way that become robust to the different characteristics of the data at hand.
In this sense, the Self-Organizing Maps (SOM) can be considered as good options to address
such objectives. It is a biologically inspired neural model that uses unsupervised and incremental
learning to produce prototypes of the input data. However, such an unsupervised characteristic
makes it unfeasible for SOM to execute Semi-Supervised Learning. In that way, this Dissertation
presents some new proposals based on SOM to perform Semi-Supervised learning tasks for
both clustering and classification. It is done by introducing to SOM the standard concepts of
Learning Vector Quantization (LVQ), which can be seen as its supervised counterpart, to build
hybrid approaches. Such proposals can dynamically switch between the two types of learning at
training time, according to the availability of labels and automatically adjust themselves to the
local variance observed in each data cluster. In the course of this work, the experimental results
show that the proposed models can surpass the performance of other traditional methods not
only in terms of classification but also regarding clustering quality. It also enhances the range
of possible applications of a SOM and LVQ-based models by combining them with recent and
promising techniques from Deep Learning to solve more complex problems commonly found in
such field.
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RESUMO

Nos últimos anos, os avanços na tecnologia tem produzido conjuntos de dados de taman-
hos cada vez maiores, não apenas em relação ao número de amostras, mas também ao número
de características. Infelizmente, apesar desses avanços, criar uma quantidade suficientemente
grande de dados, adequadamente rotulados com amostras suficientes para cada classe, não é
uma tarefa fácil. Organizar e rotular esses dados é desafiador, caro e demorado. Além disso,
por ser geralmente feito de forma manual, pessoas podem rotular com diferentes formatos e
estilos, incorporando ruído e erro aos dados. Assim, há um crescente interesse em aprendizagem
semi-supervisionada, uma vez que, em muitas tarefas de aprendizagem, existe uma abundante
quantidade de dados não rotulados, em contrapartida aos rotulados. Portanto, no atual estágio de
pesquisa, é de grande importância desenvolver modelos de aprendizagem semi-supervisionada,
com o intuito de combinar os dois tipos de dados, a fim de se beneficar das distintas informações
que eles podem fornecer. Dessa forma, é possível obter melhores desempenhos para ambas as
tarefas de agrupamento e classificação, o que pode expandir a gama de aplicações em aprendiza-
gem de máquina. Ainda, desenvolver modelos que sejam fáceis de parametrizar de tal maneira
que se tornem robustos às diferentes características dos dados disponíveis também é relevante.
Nesse sentido, Mapas Auto-Organizáveis (SOM) podem ser considerados boas opções. O SOM
é um modelo neural, biologicamente inspirado, que usa aprendizagem não-supervisionada e
incremental para produzir protótipos dos dados de entrada. No entanto, sua característica não-
supervisionada inviabiliza a realização de aprendizagem semi-supervisionada. Esta Dissertação
apresenta algumas novas propostas de modelos baseados em SOM para realizar tarefas de
aprendizagem semi-supervisionada tanto para agrupamento, como para classificação. Isso é
feito introduzindo ao SOM conceitos da tradicional Quantização Ventorial (LVQ), que pode ser
vista como sua versão supervisionada para construir abordagens híbridas. Tais propostas podem
alternar dinamicamente entre duas formas de aprendizagem em tempo de treinamento, de acordo
com a disponibilidade de rótulos, além de se ajustarem automaticamente às variâncias locais
observadas em cada grupo de dados. No decorrer deste trabalho, os resultados experimentais
mostram que os modelos propostos podem superar o desempenho de outros métodos tradicionais,
não apenas em termos de classificção, mas também na qualidade de agrupamento. As propostas
também aumentam a gama de possíveis aplicações de modelos baseados em SOM e LVQ, uma
vez que os combinam com técnicas recentes e promissoras de aprendizagem profunda para
resolver problemas mais complexos comumente encontrados em tal área.

Palavras-chave: Mapas Auto-Organizáveis. Aprendizagem Semi-Supervisionada. Agrupa-
mento. Classificação.
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1
INTRODUCTION

In a broad sense, the learning processes can be distinguished based on their fundamentally
different types of tasks. In the first, called learning with a teacher, or supervised learning,
involving only labeled data, the goal is to learn a function that maps an input to an output
based on a set of labeled training examples. Each example consists of an input object and a
corresponding desired (target) response. In the second, called unsupervised learning, involving
only unlabeled data, there is no external teacher or critic to oversee the learning process. Instead,
provision is made to find interesting structure in the data by learning from its statistical regularities
to develop the ability to form internal representations for encoding its features. Finally, in the
so-called reinforcement learning, the learning of an input-output mapping is performed through
continued interaction with the environment in order to minimize some kind of cost function
(Haykin, 2009; Chapelle et al., 2009)

Moreover, over the last few years, the use of machine-learning technology has driven
many aspects of modern society. Recent research on Artificial Neural Networks with supervised
learning has shown significant advances. It is the most common form of machine learning, deep
or not (LeCun et al., 2015). Nowadays, it is not unusual to see on the news several practical
applications, in diverse areas, such as Robotics (Levine et al., 2016), Genomics (Araujo et al.,
2013), and Natural Language Processing (Zhou et al., 2016). A key to the success of supervised
learning, especially, deep supervised learning, is the availability of sufficiently large labeled
training data. Unfortunately, despite these advances, creating a sufficiently large amount of
properly labeled data with enough examples for each class (sometimes, in the order of thousands
of patterns per class) is not an easy task. Organizing and labeling such data is a very complicated
job. Labeling is expensive, time-consuming, and challenging. Also, it is usually done manually.
Thus, people can label with different formats and styles, incorporating noise and errors to the
dataset (Jindal et al., 2016).

Because of that, the use of supervised learning methods became impractical in many
applications such as in the medical field, where it is extremely difficult and expensive to obtain
balanced labeled data. In other areas, such as robotics, the dynamic imposed makes it impossible
to have real-time labels. Also, in certain problems, new categories of elements may frequently
arise, making it infeasible to create a comprehensive previously labeled training dataset. On
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the other hand, unlabeled data usually can be easily obtained due to such advances that have
produced datasets of increasing size, not only regarding the number of samples but also the
number of features. In this sense, unsupervised learning can be applied to perform clustering
tasks. However, clustering is a more difficult and challenging problem, and the nature of the data
can make the clustering tasks even more difficult, so any kind of additional prior information in
respect to the data can be useful to obtain a better performance.

Therefore, at the current stage of research, it is of great importance to put forward
methods that can combine both types of data in order to benefit from the information they can
provide, each of them in their way, that would expand the range of machine learning applications
(Chapelle et al., 2009). To do so, and also obtain performance improvements, Semi-Supervised
Learning (SSL) is typically applied. It is a halfway between supervised and unsupervised
learning and can be used to both clustering and classification tasks even with a lack of labeled
data because unlabeled data has a large amount of discriminative information that can be fully
explored by SSL algorithms (Chapelle et al., 2009; Schwenker & Trentin, 2014). In addition, it
is also worth pointing out that such interest for SSL is growing in the machine-learning (Xiaojin
& Zoubin, 2002; Zhou et al., 2004) alongside in the deep learning context (Goodfellow et al.,
2016; LeCun et al., 2015), in which is also making use of SSL, such as in (Rasmus et al., 2015;
Liu et al., 2015; Dozono et al., 2016; Chen et al., 2018; Hailat et al., 2018).

Moreover, SSL can be further classified into semi-supervised classification and semi-
supervised clustering (Schwenker & Trentin, 2014). Firstly, in semi-supervised classification, the
training process tries to exploit additional information (often available as label classes) together
with the unlabeled data to achieve a more accurate classification function. Secondly, in semi-
supervised clustering, this prior information is used to obtain a better clustering performance
(Basu et al., 2002; Schwenker & Trentin, 2014). In this regard, semi-supervised approaches such
as Label Propagation (LP) (Xiaojin & Zoubin, 2002) and Label Spreading (LS) (Zhou et al.,
2004) can be pinpointed. They operate on proximity graphs or connected structures to spread
and propagate information about the class to nearby nodes according to a similarity matrix. This
is based on the assumption that nearby entities should belong to the same class, in contrast to far
away entities (Xiaojin & Zoubin, 2002; Herrmann & Ultsch, 2007). However, they have some
drawbacks concerning the estimation of propagation radius, which is crucial for convergence.

Still, in the context of unsupervised learning, it is possible to highlight the prototype-
based methods as a start point for introducing modifications to perform semi-supervised learning.
They produce as a result prototypes that can properly represent the clusters identified, which are
normally formed by similar samples that share general characteristics. K-Means (Basu et al.,
2002) and SOM (Kohonen, 1990; Bassani & Araujo, 2015) are the most basic examples of this
approach. Therefore, semi-supervised K-means and SOM-based methods were very successful
demonstrating their advantages over standard unsupervised approaches, being successfully
applied for both semi-supervised clustering and classification tasks (Jain, 2010).

SOM is an unsupervised learning method, frequently applied for clustering. The Learning
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Vector Quantization (LVQ) (Kohonen, 1995), on the other hand, is a supervised method, normally
used for classification, that shares many similarities with SOM. They both were proposed by
Teuvo Kohonen, and since then, various modifications have been proposed to improve their
performances in more challenging problems, like those with thousands of features, commonly
found in areas such as data mining (Kriegel et al., 2009) and bioinformatics (Araujo et al., 2013).

High-dimensional and more complex data pose different challenges for clustering and
classification tasks. In particular, traditional similarity measures often applied in prototype-based
methods may become meaningless due to the curse of dimensionality (Köppen, 2000), in which
objects may appear approximately equidistant from each other, that is aggravated by the presence
of irrelevant dimensions in the dataset. Hence, such problems require some adaptations and
more sophisticated approaches. In this context, subspace clustering and projected clustering
methods appear as common options. They aim at determining clusters in subspaces of the input
dimensions. It involves not only the clustering itself but also the identification of the relevant
subsets of the input dimensions for each cluster (Kriegel et al., 2009). One way to achieve this
is by applying local relevances to the input dimensions, which is the usual manner that both
SOM and LVQ-based methods use to deal with such problems. It has been shown to provide
significant performance improvements.

Recent SOM-based methods usually employ a threshold defining the minimum level
of similarity for an input pattern to be considered associated with a cluster prototype. This
threshold level is a parameter of the model which is shared by all prototypes (Bassani & Araujo,
2015; Bassani & Araújo, 2012). Thus, there are difficulties for the methods to define the regions
that each prototype can represent independently. Those regions can be viewed as the local
receptive field of the prototypes, and are commonly estimated using supervised approaches, as in
Fischer et al. (2016). Such regions can also be associated with the idea of rejection options, early
introduced by Chow (1970). It is related to the conditions of taking a classification or recognition
decision for a particular point or a data region. Still, according to Chow (1970), because of
uncertainties and noise inherent in any pattern recognition task, errors are generally unavoidable.
Uncertainty has typically two sources: points being outliers or located in ambiguous regions
(Vailaya & Jain, 2000). The option to reject is introduced to avoid an excessive misrecognition
rate by converting it into rejection. This option can be viewed as the conditions for taking a
classification or recognition decision for a particular point or a data region. For instance, an
algorithm can perform reject-option decisions in such a way that any samples assigned to a class
or cluster will only be accepted if some criterion is met. This is normally applied at classification
time when there is considerable uncertainty associated. Thus, the input pattern does not affect the
learning procedure. However, some approaches employ such decisions at training time aiming to
learn such conditions more precisely (Fischer et al., 2016).

In the case of SOM-based methods, those decisions can be related to the prototypes that
are represented by the nodes in the map, which must accept or not other input patterns to be part
of their representation pool. Still, such reject-option decisions define the first step towards an



232323

adaptation of the model complexity tailored to data regions with a high degree of uncertainty,
e.g., introducing new prototypes which are capable of representing novel aspects of the data.
(Fischer et al., 2014). So far, the great part of models that use rejection options deal with just
a single threshold shared by all prototypes, as well as most of them can handle only binary
classification (Fischer et al., 2016).

Moreover, the existing prototype-based methods are not suitable for working with data
as complex as raw images. However, if a feature extraction step is carried out beforehand they
can perform well. One way to do this is by applying standard extractors such as Scale Invariant
Feature Transform (SIFT) (Lowe, 1999) and Speeded-Up Robust Features (SURF) (Bay et al.,
2006). Nevertheless, more recent approaches based on Deep Learning (LeCun et al., 2015) and
Transfer Learning (Yosinski et al., 2014) techniques have presented promising results, such as in
Oliver et al. (2018), and Medeiros et al. (2018).

Thus, not only the data itself can be used for clustering or classification tasks, but also
useful characteristics or features that can be identified and extracted. Also, it is common to see
many works using features extracted by neural networks models pre-trained on large datasets
such as ImageNet (Deng et al., 2009) to work around the computational cost necessary to train
such amounts of data, whereby exploring the generalization capability of models to improve the
performance and reduce the training cost and time. Finally, such strategies are often neglected in
SSL field, but it is still a good option to take into consideration, including for subspace clustering.

Considering what has been set out, the objective of this Dissertation is to develop Semi-
Supervised models based on the concepts of both SOM and LVQ in order to improve the results
obtained with traditional SSL methods in the literature. From this point on, this Dissertation also
has the following specific objectives:

1. Extend the application range of the models;

2. Improve not only the classification rate but also the clustering quality when there is
no label available;

3. Develop a strategy to estimate local rejection options as a function of both local
variance and the relevance of input dimensions to make pattern rejection decisions;

4. Reduce the parametric sensitivity and stabilize the performance of models to not
degrade with changes in parameter values.

The main objective is first achieved with the proposal of Semi-Supervised Self-Organizing
Map. Later on, to extend the application range of the models, the Batch SS-SOM is proposed.
Finally, the last objectives are accomplished with the development of the last proposed model,
Adaptive Local Thresholds Semi-Supervised Self-Organizing Map. The results obtained with
SS-SOM were shown to have led to significant improvements in classification results for small
amounts of labeled data in comparison with other semi-supervised models. Batch SS-SOM
achieved surprisingly good results for the tasks it was designed for. Finally, ALTSS-SOM has
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shown to be very effective for clustering tasks solely likewise for classification, improving the
results obtained with SS-SOM.

The rest of this dissertation is organized as follows: Chapter 2 presents essential concepts
related to the areas where this work is inserted. Chapter 3 introduces related work in the literature
that is the core behind the ideas developed to build the proposed models. Chapter 4 describes in
detail the first model proposed as well as one of its extensions and preliminary results. Chapter 5
introduces a detailed explanation of the last proposed model together with some of its preliminary
outcomes. Later on in Chapter 6, the experimental setup, methodology, obtained results, and
comparisons will be discussed in order to validate the proposals. Finally, Chapter 7 concludes
this dissertation by analyzing the obtained results and indicating future directions and practical
applications for the proposed models.
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2
THEORETICAL BACKGROUND

In the current chapter, some concepts will be discussed in order to establish the theoretical
foundation related to the developed research. First, in Section 2.1, a SOM and how it works is
explained. Its understanding is essential for the ideas proposed in the present work to be clear.
Second, in Section 2.2, the LVQ is introduced. It is also of a great importance once its standard
concepts are explored to build a hybrid approach by combining both SOM and LVQ. Third,
Section 2.3 defines the concept of rejection option. Later on, Section 2.4 presents the problems
of High-Dimensional Data, Subspace and Projected Clustering. Finally, Section 2.5 introduces
and defines SSL, whereas Section 2.6 highlights forms of evaluating subspace and projected
clustering problems.

2.1 SELF-ORGANIZING MAPS

SOM, proposed by Kohonen (1990), was intended as a viable alternative for more
traditional neural network architectures. It is based on three essential processes: 1) Competition;
2) Cooperation; and 3) Adaptation, which leads to a competitive learning, where the neurons
compete among themselves to be the most activated when an input pattern is presented. The
competition results in a process that is called a winner-takes-all competition, which produces
just one winning neuron. In a SOM, the neurons are placed at the vertices of a lattice or grid that
is commonly one or two-dimensional. Therefore, SOM is characterized by the formation of a
topographic map of the input patterns, in which the spatial locations of the neurons in the grid
are indicative of intrinsic statistical features contained in the input patterns (Haykin, 2009).

SOM was initially created with the principal goal of transforming an incoming signal
pattern of arbitrary dimension into a one or two-dimensional discrete map, by performing
this transformation adaptively in a topologically ordered fashion. This results in a topology
that maps data in a high-dimensional input space distribution into units in a low-dimensional
map while preserving the similarities and the relations found between the data points in the
input space. Therefore, it is possible to pinpoint two essential aspects of SOM: its capacity
to create abstractions and its simplified way of exhibiting information. These aspects allow
several applications in diverse areas, such as statistical pattern recognition, control of robot



262626

arms, sentence understanding, image compression, and much more (Kohonen, 1990). All of
this converged to make SOM a model widely used for clustering tasks (Kohonen, 1990; Haykin,
2009).

An interesting fact about the development of SOM is its neurophysiological inspiration,
in particular, in a distinct feature of the human brain: The brain is organized in many places in
such a way that different sensory inputs are represented by topologically ordered computational
maps (Haykin, 2009). It comes from both anatomical and physiological evidence of lateral
interaction between cells: 1) in neural tissues, an activated neuron that triggers a pulse causes
a short-range excitation of other neurons that ranges from 50 to 100 µm; 2) the propagation
of the excitation to areas not related to the excitatory process is prevented by a penumbra of
inhibitory action around excited area; and 3) a weaker excitatory action surrounds the inhibitory
penumbra and ranges up to several centimeters of radius (Kohonen, 1982). Thus, certain parts
of the brain organize themselves in a way that sensory inputs are represented by topologically
ordered computational maps (Miikkulainen et al., 2006). Particularly, sensory inputs such as
tactile (Kaas et al., 1983), visual (Hubel & Wiesel, 1962), and acoustic (Suga, 1990) are mapped
onto different areas of the cerebral cortex in a topologically ordered manner. SOM captures the
essential features of computational maps in the brain and yet remains computationally tractable.
Hence, it is capable of performing data compression (i.e., by prototyping and dimensionality
reduction of the inputs) (Haykin, 2009).

2.1.1 Basic Structure of a SOM

The basic structure of a SOM (Figure 1) consists of an input layer and an output layer.
The input layer receives the synaptic inputs from the environment and propagates them to the
output layer.
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Figure 1: The basic structure of a SOM. The units xxx are the input pattern. Each synaptic-weight
vector wwwi j represents a connection between the i-th node in the input layer and the j-th node in
the output layer. In this configuration, each node in the output layer is directly connected with its
neighbors (Adapted from Bassani (2014)).

Let m denote the dimension of the input space and xxx = [x1,x2, ...,xm]
T the input pattern

vector. The synaptic-weight vector of each neuron in the map has the same dimension as the
input space. Let the synaptic weight vector of neuron j be denoted as www j =

[
w j1,w j2, ...,w jm

]T ,
with j = 1,2, ..., l, where l is the total number of neurons in the output map. The output layer
computes the final map resulting from the self organization process and its topology is normally
a two-dimensional lattice, where each node is connected with their immediate neighbors. The
idea can be simply described as to store a large set of input vectors xxx ∈ Ω by finding a smaller set
of prototypes www j ∈ Ψ so as to provide a good approximation, nearly to optimum, to the original
input space Ω (Haykin, 2009; Kohonen, 1990).

2.1.2 Self-Organization in a SOM

There are three essential steps involved in the self-organization or learning process of
a SOM: competition, adaptation, and cooperation. When an input pattern xxx is presented to the
input layer, it is propagated to all nodes in the grid. Then the competition process begins among
the nodes in order to choose the one that best matches the input pattern. In the SOM defined by
Kohonen (1982, 1990), this is done by selecting the node with the minimum Euclidian distance
to the input xxx as the winner node i(xxx) (Equation 2.1).

i(xxx) = argmin
j
[D(xxx,www j)], j ∈Φ,

�
 �	2.1

where Φ denotes all the nodes of the map and D(xxx,www j) is the Euclidian distance between xxx and
the synaptic weight vector www j, as follows in Equation 2.2:
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D(xxx,www j) =

√
m

∑
i=1

(xi−w ji)
2,

�
 �	2.2

where m is the number of dimensions. However, it is worth mentioning that minimizing the
squared Euclidean distance is mathematically equivalent, but more efficient computationally.

In self-organizing process, synaptic-weight vectors www j in the network are required to
change in relation to the input vector xxx. This defines the adaptation step. Moreover, it is crucial
to the self-organization process that the synaptic-weight vectors are not affected independently
of each other, but as topologically related subsets. It can be done by changing all the synaptic-
weight vectors of a winner node and its local neighbors to make them closer to the input pattern,
considering a more accurate approximation at every step. Different input signals in different
steps affect different regions of the grid. Thus, after many steps of self-organization, the synaptic-
weights in the grid will tend to acquire smoothly related values, equivalently to the input space
(Kohonen, 1982, 1990).

Finally, Equation 2.3 defines the updated weight vector www j(n+1) of a neuron as follows:

www j(n+1) = www j(n)+η(n)h j,i(xxx)(n)(xxx−www j(n)),
�
 �	2.3

where η(n) is the learning-rate decay function and h j,i(xxx)(n) is a topological neighborhood
function that also decays throughout the time as η(n).

For a good global ordering, Kohonen (1990) experimentally showed that the learning
rate should be time-varying, starting at some high initial value η0 and them shrink monotonically
with time as per Equation 2.4.

η(n) = η0 exp
(
− n

τ1

)
, n = 0,1,2, ...,

�
 �	2.4

where τ1 is a time constant that controls the exponential decay rate as the time step n grows.
Still, it is possible to decompose the self-organization process into two phases: the

self-organizing and the convergence phase. In the first, the topological ordering of the neurons is
performed. In the latter, the fine-tuning of the feature map takes place and therefore provides an
accurate statistical quantification of the input space (Haykin, 2009).

Furthermore, a neuron that is firing tends to excite neurons in its immediate neighborhood
more than those farther away from it. This observation leads to the introduction of a topological
neighborhood around the winning neuron j and makes it decay smoothly as the lateral distance
increases (Haykin, 2009). In particular, such observation provides the idea of the cooperation
step, where the winner node locates the center of a topological neighborhood of cooperating
nodes that also must be adjusted. The function h j,i (Equation 2.5) denotes the topological
neighborhood centered on the winning node i and encompassing a set of excited cooperating
neurons j. It is directly related to the level of adaptation applied to each node in the neighborhood.
This function is a unimodal function of the lateral distance. Therefore, it satisfies two distinct
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requirements: 1) it is symmetric about the maximum point, which is defined by
∥∥r j− ri

∥∥2
= 0

meaning that it reaches the maximum for the winner (i.e., j = i); and 2) the amplitude of the
neighborhood decreases monotonically with a Gaussian function with respect to increasing
lateral distances (Kohonen, 1982, 1990; Haykin, 2009).

h j,i(xxx)(n) = exp

−∥∥r j− ri
∥∥2

2σ2(n)

, j ∈Φ, n = 0,1,2, ...,
�
 �	2.5

where ri and r j defines the position of the winner i and its neighbor j in the grid, Φ denotes all
the nodes of the map, and σ(n) (Equation 2.6) represents the width or radius of the topological
neighborhood function. The σ(n) value measures the degree to which excited neurons in
the vicinity participate in the learning process. It starts with a high value, σ0, and decreases
monotonically with time, corresponding to Equation 2.5 (Kohonen, 1982; Haykin, 2009).

σ(n) = σ0 exp
(
− n

τ2

)
, n = 0,1,2, ...,

�
 �	2.6

where τ2 is another time constant that controls the exponential decay rate as the time step n

grows.
Thereby, the basic structure of a SOM is defined. It is important mentioning that input

patterns with the same winner node are considered to belong to the same cluster and then can
be represented by the synaptic-weight vector as the cluster prototype, once it summarizes the
characteristics of the grouped inputs.

2.2 LEARNING VECTOR QUANTIZATION

The LVQ, also proposed by Kohonen (1995), is a family of algorithms for statistical
pattern classification that uses prototypes (codebook vectors) to represent class regions. These
regions are defined by hyperplanes between prototypes, resulting in Voronoi partitions (Nova &
Estévez, 2014). While the basic SOM is unsupervised, the LVQ is characterized by supervised
learning. Also, unlike in SOM, no neighborhoods around the so-called "winner" are defined
during the learning process, whereby no spatial order of the codebook vectors is expected to
ensure. Since LVQ was meant to be strictly for statistical classification and recognition, its only
aim is to define class regions in the input space (Kohonen, 1995).

Basically, the LVQ classification scheme is based on the Best Matching Unit (BMU)
(winner-takes-all strategy), as in SOM, with a Hebbian learning-based approach. To do so, let
XXX = {(xxxi,yi) , i ∈ 1, ...,N} be the training set of N samples, where xxxi is a m-dimensional vector
in the feature space, and yi ∈ {1, ...,C} is its class label expressed by one of C possible classes.
Then, LVQ iteratively tries to improve some initial set of P prototypes, which are characterized
by W =

(
www j,c j

)
, j ∈ 1, ...,P, where www j is m-dimensional as xxxi, and c j ∈ {1, ...,C} its class label,

as yi. The winner prototype is selected as the one with the minimum distance to the input vector,
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so the receptive field of www j is defined by Equation 2.7 (Kohonen, 1995; Nova & Estévez, 2014).

R j = {xxxi ∈ XXX = argmin
j
[D(xxxi,www j)],∀ j ∈ 1, ...,P}, i ∈ 1, ...,N},

�
 �	2.7

where D(xxxi,www j) is a distance measure.
The learning process aims to determine the weight vectors in a way that the training

data are mapped to their corresponding class label region. Because the standard LVQ has some
drawbacks, various modifications of LVQ were proposed over the years. They ensure faster
convergence, a better adaptation of the receptive fields, and an adaptation for complex data
structures (Nova & Estévez, 2014).

2.3 REJECT OPTIONS

According to Chow (1970), because of uncertainties and noise inherent to any pattern
recognition task, errors are generally unavoidable. Uncertainty has typically two reasons: points
being outliers or located in ambiguous regions (Vailaya & Jain, 2000). The option to reject
is introduced to avoid an excessive misrecognition rate by converting it into rejection. In this
context, the concept of reject options is introduced. It is related to the conditions of taking a
classification or recognition decision for a particular point or a data region. An early reject
option defined by Chow (1970) says that if the costs for a misclassification versus a rejected
data point are known, one can determine an optimal rejection threshold based on the probability
of misclassification. A reject-option classifier is demonstrated in Figure 2. It can be seen that
the class-conditional density p(x|ωt) is thresholded in such a way that any object x assigned
to ωt will only be accepted if p(x|ωt) > td . It is typically applied at classification time when
there is considerable uncertainty associated. Thus, the input pattern does not modify the models.
However, some approaches use such rejection rule at training time aiming to learn such rules
more precisely to improve the outcomes (Jiang & Mojon, 2003; Fischer et al., 2016).
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Figure 2: A synthetic example that illustrates the class-conditional densities for ωt , ωo, and ωr,
with a distance-based reject-option classifier. The classification boundary is specified by θ , and
the rejection boundary by td = 0.15 (Landgrebe et al., 2006).

Such rejection options define the first step towards an adaptation of the model complexity
tailored to data regions with a high degree of uncertainty (Fischer et al., 2014). The first
alternative to think about is usually rejection based on deterministic certainty measures. Many
of them are based on geometric quantities such as the distance to the decision border for
classification tasks, or to the boundary of clusters and its subspaces for clustering tasks. So far,
the great part of models that use rejection options deal with just a single threshold, as well as
most of them can handle only binary classification, particularly with global thresholds and limits.
However, extensions to more general settings like multi-label classification, multiple classes,
multithresholding and local thresholding techniques have been considered (Fischer et al., 2016;
Jiang & Mojon, 2003). Further, there are also a few adaptive local thresholding techniques, such
as in Chow & Kaneko (1972), Jiang & Mojon (2003) and Phansalkar et al. (2011).

In the literature, some state of the art strategies for rejection option are listed in Fischer
et al. (2014). On considering both local and global rejection, with the latter being the most com-
mon form, they can be divided into three distinct categories Fischer et al. (2016): 1) probabilistic
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approaches; 2) turning deterministic measures into probabilities, and 3) deterministic approaches.
In the SOM based context, these decisions are associated with the nodes in the map (i.e., when
they must accept an input pattern to be part of its representation pool).

2.4 HIGH-DIMENSIONAL DATA, SUBSPACE AND PROJECTED CLUS-

TERING

Over the last decades, with the advances in technology, the modern capabilities of auto-
matic data generation and acquisition have produced more challenging datasets with thousands
of dimensions. The nature of such high-dimensional datasets requires a more sophisticated
clustering approach. A significantly high number of dimensions implies the well-known curse
of dimensionality (Köppen, 2000), where traditional similarity measures become meaningless.
A common way to overcome such problems of high-dimensional data spaces where several
features are correlated, or only some features are relevant is to perform a dimensionality reduc-
tion technique before performing any other task. It can be divided into feature extraction and
feature selection. Feature extraction methods like Principal Component Analysis (PCA) are
based on a transformation of the original features, i.e., it maps the original data space to a lower-
dimensional one. On the other hand, feature selection methods aim at finding the best subset of
the original features by discarding the ones that are not relevant, what is not always attainable
because sometimes different features are important to distinct clusters (Pudil & Novovičová,
1998). Unfortunately, such techniques cannot be applied to clustering problems. In this sense,
conventional clustering approaches to cope with such imposed problems are subspace clustering,
projected clustering, pattern-based clustering, and correlation clustering (Kriegel et al., 2009).
The scope of the present work considers subspace and projected clustering.

When dealing with high-dimensional data, the presence of irrelevance features of corre-
lations among subsets of features strongly influences the appearance of clusters in the original
data space. Different subsets of features may be relevant for distinct clusters, and different
correlations among the features may be relevant for different clusters. This phenomenon is called
local feature relevance or local feature correlation (Kriegel et al., 2009).

A very common premise to reduce the infinite search space of all possible subspace
is to consider axis-parallel subspaces only. So, due to the exponential search space in certain
cases, all algorithms that are limited to finding clusters in axis-parallel subspaces must only take
into consideration different factors that usually affect the obtained results, for example, one can
assume that a different set of features is relevant for each cluster, where the remaining features
are irrelevant (Kriegel et al., 2009). Notice that, in the literature, the terms projected clustering
and subspaces clustering usually refer to the problem of finding axis-parallel clusters, but it is not
always true (Vidal, 2011). It is also important to pinpoint that the problem of subspace clustering
occurs even in low dimensions, but it is intensified as the number of dimensions increases. Figure
3 illustrates a subspace clustering problem. More precisely, Figure 3a displays a simulated
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dataset with three dimensions, in which there are 12 clusters. Note that, for each cluster, one of
the three dimensions has the data points spreading along its whole domain. Thus such dimension
is irrelevant for the clustering. Figure 3b is a 2D projection concerning only two dimensions.
In this example, in the other two dimensions, the data points present a small variation around
a central point, determining the clusters. In such dataset, none of the three dimensions can be
removed without losing relevant information for 8 out of 12 clusters. Clusters like these are
called subspace clusters (Vidal, 2011; Bassani & Araújo, 2012).

(a) Example of a 3D dataset (b) 2D Projection

Figure 3: Subspace Clustering Problems

According to Kriegel et al. (2009), the assumptions made when building such kind of
models define its classification. First, there is the algorithmic approach employed to explore the
exponential search space of all possible subspaces, which are categorized as algorithmic-oriented
models. Depending on what they consider at the beginning, all the dimensions as relevant and
then reduce it to match the data, or the contrary, they can be defined as Top-Down or Bottom-Up,
respectively.

Second, there is the problem-oriented classification, which can be divided into four
different classes of problem statements:

1. Projected Clustering Algorithms: A first class of models that aims to find a unique
assignment of each pattern to exactly one subspace cluster. Generally, they try to find
the projection to which the currently considered set of patterns is clustered best.

2. Soft Projected Clustering Algorithms: The second class of algorithms that is charac-
terized by the assumption that the number of clusters, k, is known beforehand in a
way that an objective function can be defined to derive the optimal set of k clusters.
For such a class of algorithms, the subspaces are not assigned in a hard way. Different
attributes may be uniquely weighted, but all of them contribute to the clustering.
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3. Subspace Clustering Algorithms: A third class of algorithms that are dedicated in
finding all clusters in all subspaces.

4. Hybrid Algorithms: The last class of algorithms that aims at finding something in
between, usually clusters that may overlap, but not all clusters in all subspaces.

The research developed in the current work mainly focused on Subspace and Projected
Clustering. Particularly, adaptive weighting distance functions will be adopted trying to cope
with the challenges imposed by high-dimensional data. The basic idea, introduced in Kangas
et al. (1990), Bassani & Araújo (2012) and considered here, is to apply a weighting factor for
each input dimension. Even though it requires other mechanisms to be used combined, it is still
a fundamental principle that is enforced in this work. Adaptive Weighting approaches and some
models that use it will be discussed further in the next chapter.

2.5 SEMI-SUPERVISED LEARNING

In the past years, there has been a growing interest in a hybrid setting, referred to as
Semi-Supervised Learning (SSL). SSL is a combination between supervised and unsupervised
learning. In many learning tasks, there is a plentiful supply of unlabeled data, but insufficient
labeled ones, since it can be expensive and hard to generate. The basic idea of SSL is to take
advantage of both labeled and unlabeled data during the training, combining them to improve
the performance of the models (Schwenker & Trentin, 2014; Jain, 2010; Chapelle et al., 2009;
Zhu, 2006).

Moreover, SSL can be further classified into semi-supervised classification and semi-
supervised clustering (Schwenker & Trentin, 2014). Firstly, in the semi-supervised classification,
the training set is given in two parts: S = {(xxxi,yi)|xxxi ∈ RD,yi ∈ Y,1 ≤ i ≤M} and U = {ui ∈
RD|i = 1, · · · ,M}. Where S and U are the labeled and unlabeled data, respectively. At first
hand, it is possible to consider a traditional supervised scenario using just S to build a classifier.
However, the unsupervised estimation of the probability function p(xxx) of the input set can take
advantage of both S and U. Besides, classification tasks can reach a higher performance through
the use of SSL as a combination of supervised and unsupervised learning (Schwenker & Trentin,
2014). Many semi-supervised classification algorithms have been developed in the past decades,
and, according to Zhu (2006), we can structure them into the following categories: 1) Self-
training; 2) SSL with generative models; 3) Semi-supervised Support Vector Machines (S3VM),
or Transductive SVM; 4) SSL with Graphs; and 5) SSL with Committees.

Secondly, in the semi-supervised clustering, the aim is to group the data in an unknown
number of groups relying on some kind of similarity or distance measures in combination with
objective functions. Clustering is a more difficult and challenging problem than classification,
and the nature of the data can make the clustering tasks even more difficult, so any kind of
additional prior information in respect to the data can be useful to obtain a better performance.
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Therefore, the general idea behind semi-supervised clustering is to integrate some type of prior
information in the process. For example, a subset of labeled data and further constraints on pairs
of the patterns in form of must-link and cannot-link (Schwenker & Trentin, 2014; Zhu, 2006).
Prototype-based models (e.g., k-means, and SOM), Hidden Markov Random Fields (HMRF),
Expectation Maximization (EM), Label Propagation, and Label Spreading are examples that
have been successful in this area (Schwenker & Trentin, 2014; Zhu, 2006; Basu et al., 2002; Jain,
2010).

For instance, LP based methods operate on proximity graphs or connected structures to
spread and propagate information about the class to nearby nodes according to a similarity matrix.
It is based on the assumption that nearby entities should belong to the same class, in contrast to
far away entities (Xiaojin & Zoubin, 2002; Herrmann & Ultsch, 2007). For LP purposes, each
node is assigned to a label vector. A label vector li ∈ [0,1]k contains the probabilistic membership
degrees of input samples to the available cluster. Here, the nodes propagate their label vectors to
all adjacent nodes according to a defined distance W. Nodes belonging to a pre-classified input
sample have fixed label vectors (Herrmann & Ultsch, 2007). Therefore, a similar alternative to
LP is the so-called LS (Zhou et al., 2004). It differs from LP due to modifications the way the
similarity matrix is computed. LP uses the raw similarity matrix constructed from the data with
no changes, whereas LS minimizes a loss function that has regularization properties allowing it
to be often better regarding robustness to noise.

Some recent results, such as in Laine & Aila (2016) and Miyato et al. (2018), demon-
strated that in certain cases, SSL presented a performance close to purely supervised learning,
even when the great part of the labels are discarded. These results are commonly computed
by taking an existent classification dataset but only using a small portion of it as labeled data
whereas the rest are treated as unlabeled. However, there is not a well-established experimental
methodology. Because of that, Oliver et al. (2018) tries to define it.

Moreover, it is also worth pointing out that the interest for SSL is growing in the machine
learning alongside with the deep learning (LeCun et al., 2015) context, as it is possible to see
in Hailat et al. (2018), Chen et al. (2018), Laine & Aila (2016), Rasmus et al. (2015), Kingma
et al. (2014), Zhou et al. (2004), Zhu et al. (2003), and Xiaojin & Zoubin (2002). Also, it is
not unusual to see the term Deep Semi-Supervised Learning (DSSL) to express deep learning
methods applicable to SSL. They range from approaches based on generative models (Kingma
et al., 2014) to transfer learning (Oliver et al., 2018) and SOM-based models (Liu et al., 2015;
Dozono et al., 2016).

2.6 EVALUATION OF SUBSPACE AND PROJECTED CLUSTERING

There are several ways of evaluating subspace and projected clustering in the literature.
Section 2.6.1, Section 2.6.2 and Section 2.6.3 define some metrics, benchmark datasets and
parameter sampling techniques that can be used to do such an evaluation.
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2.6.1 Clustering Error

According to Patrikainen & Meila (2006) and Müller et al. (2009), there are numerous
well-known existing metrics for comparing subspace and project clustering methods. However,
all criteria for comparing clusterings are based on the so-called confusion matrix.

Let C be a clustering partitioning of the set of m data points into disjoint clusters
C1,C2, ...,CK of sizes m1,m2, ...,mK , where ∑

K
i=1 mi = m. The confusion matrix M = {mi j} is

a K×K′ matrix whose ij-th element is the number of points in the intersection of the two
clusters, i.e., assuming that C = {C1,C2, ...,CK} and C′ = {C′1,C′2, ...,C′K′} are two clusterings,
the element mi j of M is defined as mi j = |Ci∩C′j|, and C′ normally denotes the ground truth (the
expected result), where K is the number of clusters found and K′ is the number of cluster in the
ground truth (Patrikainen & Meila, 2006).

Based on the previous definition, among several metrics, Clustering Error (CE) is a way
of comparing clusterings. It is defined as the proportion of points which are clustered differently
in C and C′ after an optimal matching of clusters is found. Particularly, for ordinary clustering,
it is the scaled sum of the nondiagonal elements of the confusion matrix, minimized over all
possible permutations of rows and columns (Patrikainen & Meila, 2006). In this context, CE
can be seen as a generalization of the Classification Error (ClaE), often used to evaluate regular
clustering results. In fact, as the percentage of relevant dimensions increases, CE converges to
the complement of the classification error (1 - ClaE) (Bassani & Araujo, 2015).

For subspace clustering, once a sample can be associated with more than one cluster, the
rows and the columns of the confusion matrix M do not necessarily sum up to the number of
clusters. Therefore, CE for subspace clustering is defined as in Equation 2.8.

CE(C,C′) =
|U |−Dmax

|U |
,

�
 �	2.8

where Dmax is the maximized sum of the diagonal elements of M and |U | is the number of data
matrix elements in the union of C and C′.

Therefore the CE measure maps each cluster found to at most one ground truth cluster
and also each ground truth cluster to at most one cluster found. It takes into account not
only the clusters produced but also the relevant dimensions found for each cluster, and it
penalizes clustering results which split up a cluster in several smaller ones (concerning objects
or dimensions). CE ∈ [0,1] interval, and the higher the value the better the clustering matching
(Müller et al., 2009).

2.6.2 Benchmark Datasets

First, the OpenSubspace framework (Müller et al., 2009) provides seven real-world
datasets that can be explored. These seven datasets (specified by Table 1) are adapted by Müller
et al. (2009) from the UCI machine learning repository (Asuncion & Newman, 2007). However,
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the framework does not include information about their relevant dimensions.

Table 1: Specifications of the Real-World
Datasets

Datasets Samples Features Classes

Breast 198 2 33

Diabetes 768 2 8

Glass 214 6 9

Liver 345 2 6

Pendigits 7494 10 16

Shape 160 9 17

Vowel 990 11 10

Second, traditional image benchmark datasets, such as Canadian Institute For Advanced
Research (CIFAR10), SVHN, MNIST, and FashionMNIST can be used. They are specified in
Table 2.

Table 2: Specifications of the Deep Learning Bench-
mark Image Datasets

Datasets Resolution Channels Classes

CIFAR10 32 x 32 3 10

SVHN 32 x 32 3 10

MNIST 28 x 28 1 10

FashionMNIST 28 x 28 1 10

The CIFAR10 dataset consists of 60000 32x32 color images of 10 different classes, with
6000 images per class. There are 50000 training images and 10000 test images Krizhevsky &
Hinton (2009). Figure 4a shows some of its samples. The SVHN is a real-world color image
dataset of house numbers obtained from Google Street View images. It is mostly used for
developing machine learning and object recognition algorithms with a minimal requirement for
data processing and formatting. Also, SVHN has 10 classes, 73257 images for training, 26032
images for testing, and 531131 extra training data, all of them with a 32x32 resolution Netzer
et al. (2011). Figure 4b illustrates some samples found in the training set.

The MNIST is a widely used deep learning database of handwritten digits. It has a
training set of 60000 examples and a test set of 10000 examples. It is a combination of databases
from digits of high school students and employees of the United States Census Bureau. The
samples have a 28x28 greyscale resolution (LeCun, 1998). Figure 4c shows a grid of its samples.
Fashion-MNIST is MNIST-like fashion product database. It shares the same image size and
structure of training and testing sets of MNIST dataset (Xiao et al., 2017). Figure 4d shows
Fashion-MNIST samples.
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Nowadays, the MNIST is considered an easy problem. The SVHN is much harder
than MNIST because its images have lack of contrast, normalization and sometimes the digits
are overlapped by others, or it has noisy features. Also, Fashion-MNIST is intended to serve
as a direct drop-in replacement of the original MNIST dataset for benchmarking machine
learning algorithms. All the images shown by Figure 4 are samples from each dataset described
in Table 2, and were generated using t-Distributed Stochastic Neighbor Embedding (t-SNE),
a dimensionality reduction technique that is particularly well suited for the visualization of
high-dimensional datasets (Maaten & Hinton, 2008).

(a) CIFAR10 Samples (b) SVHN Samples

(c) MNIST Samples (d) FashionMNIST Samples

Figure 4: Samples from each dataset described in Table 2 generated using t-SNE (Maaten &
Hinton, 2008).
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2.6.3 Latin Hypercube Sampling - LHS

Usually, subspace clustering methods have several parameters and adjusting them is
not an easy task. In this regard, a parameter sampling technique can be applied to find good
parameters values and to understand how they affect the results. The Latin Hypercube Sampling
(LHS) (McKay et al., 1979; Helton et al., 2005) is a parameter sampling technique that guarantees
the full coverage of the range of each parameter. Let xxx = {X1, ...,Xk} be the values of k input
parameters, and S be the sample space of xxx. Now, consider partitioning S into L disjoint intervals
to sample parameter values aiming to represent all areas of the sample space S of xxx. The LHS
ensures that all portions of S are sampled and that each of the input parameter Xi has all portions
if its distributions represented by input values. To do so, it divides the range of each parameter
Xi into N intervals of equal probability 1/N, resulting in a random selection of a single value
from each interval. After that, each sampled component from Xi is matched at random with the
other various Xi. LHS ensures that each component is represented in a fully stratified manner, no
matter the importance that a component might have (McKay et al., 1979; Helton et al., 2005).

The next chapter will discuss some SOM and LVQ variations that are more suitable
at solving the problems of high-dimensional data, subspace and projected clusters that were
sketched here.
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3
LVQ AND SOM-BASED MODELS

Section 2.1 and Section 2.2 of the previous chapter described the original SOM and LVQ,
as proposed by Kohonen (1982, 1990) and Kohonen (1995), respectively. SOM is usually applied
to unsupervised clustering tasks, whereas the LVQ is supervised and applied to classification.
However, they both are not appropriate to deal with more challenging problems (or datasets),
specifically when there is a great number of dimensions (Bassani & Araújo, 2012; Parsons
et al., 2004). Nowadays, datasets with thousands of dimensions are not rare and can be easily
found in areas such as data mining (Kriegel et al., 2009), bioinformatics (Araujo et al., 2013),
computer vision (Vidal, 2011), and more. Such datasets challenge not only the SOM and LVQ,
but also other traditional clustering and classification algorithms that consider all the existent
dimensions as relevant due to the presence of dimensions that present uncorrelated values for
some samples, and therefore are not relevant for all clusters or classes. In high-dimensional data,
these dimensions can misguide the algorithms by hiding clusters in noisy data (Bassani & Araújo,
2012). Recap Section 2.4 which stated that as a consequence of the curse of dimensionality,
traditional distance metrics often used by traditional clustering and classification methods may
become meaningless. The model proposed by Kangas et al. (1990) is an example of a SOM
that uses a weighting distance metric, allowing it to start dealing with such mentioned problem.
On the other hand, Hammer & Villmann (2002) also proposed a model to cope with the same
problems, but in the context of LVQ.

Moreover, another important aspect to consider in the original SOM and in some of
its variants is the fixed topology. It usually requires a deep understanding of the data, and
may not adequately represent clusters that live in different subspaces (Bassani & Araújo, 2012;
Bassani & Araujo, 2015). This issue has been addressed by SOM-based models that present a
time-varying structure, as in Araujo & Rego (2013); Bassani & Araujo (2015). These maps learn
the topology during the training process trying to determine an optimum arrangement at the end.
This approach relies on an incremental and robust learning process, where not only the number
of nodes but also the connections between them must be learned.

The SOM-based models proposed by Bassani & Araújo (2012) and Bassani & Araujo
(2015) will be explained in Section 3.1 and Section 3.2, respectively. Also, the LVQ-based model
introduced by Hammer & Villmann (2002) will be described in Section 3.3.



414141

3.1 DIMENSION SELECTIVE SELF-ORGANIZING MAP - DSSOM

The Dimension Selective Self-Organizing Map (DSSOM), proposed by Bassani & Araújo
(2012), is a fixed topology SOM with a dimension selective feature able to deal with subspace
and projected clustering, that was based on (Kangas et al., 1990). It is capable of adjusting the
relevance of each dimension in the distance function differently for each node in the map. In
DSSOM, instead of adjusting the scale of input patterns, as in Kangas et al. (1990), it uses the
set of weighting factors (called relevance vectors by Bassani & Araújo (2012)) to allow that
some dimensions do not interfere, or interfere less than others, in the grouping established by a
given neuron. The adjustment of the relevance vector of each neuron is made during the training
process adaptively. Another interesting feature of DSSOM is directly related with an important
characteristic found in subspace clustering problems: an input sample can belong to more than
one cluster since each cluster may take into account different subsets of the input dimensions. In
the original SOM this is not allowed, however, DSSOM provides the necessary mechanisms to
allow more than one winner for each input pattern (Bassani & Araújo, 2012).

Moreover, DSSOM considers the same adaptive weighted Euclidean distance (Equation
3.1) proposed by Kangas et al. (1990) to adjust the relevance of each dimension. However, the
vector ωωω j does not indicate the scale adjustment but the relevance of each dimension for each
node. Note that each element of ωωω j converges to a value between 0 and 1, which is inversely
proportional to the variability observed in the respective component of the input patterns clustered
in such a node (Bassani & Araújo, 2012).

[
Dω(xxx,www j)

]2
=

m

∑
i=1

ω
2
ji(xi−w ji)

2.
�
 �	3.1

Basically, in DSSOM, the winner of a competition is the one that presents the highest
activation to the input pattern xxx according to the Equation 3.2.

s1(xxx) = argmax
j
[ac(Dω(xxx,www j),ωωω j)].

�
 �	3.2

The activation of a node, defined by Equation 3.3, is a function of a weighted distance to
the input pattern, and the sum of the components of its relevance vector. Nodes that take into
account more dimensions produce higher activations (Bassani & Araújo, 2012).

ac(Dω(xxx,www j),ωωω jjj) =

m
∑

i=1
ω ji

m
∑

i=1
ω ji +Dω(xxx,www j)+ ε

,
�
 �	3.3

where ε is a small number to avoid division by zero.
The weights of the winner and its neighbors are updated as in the original SOM (Equation

2.3). However, in this step, the relevance vector is also updated considering another vector, δδδ j,
that estimates the average distance of input patterns clustered by node j (Bassani & Araújo,
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2012).

δδδ j(n+1) = (1−β )h j,i(xxx)(n)δδδ j(n)+βh j,i(xxx)(n)|xxx−www j|,
�
 �	3.4

where h j,i(xxx)(n) is the topological neighborhood function of the traditional SOM (Equation 2.5)
and β ∈]0,1[.

After computing the update of the distance vector, each component of the relevance
vector is updated according to Equation 3.5

ω ji =

1−
(
δ ji/δ jimax

)
if δ jimax > 0

1 if δ jimax = 0,

�
 �	3.5

where δ jimax is the highest component of the vector δ j. It is also possible to impose a lower-
bound limit εω for each component to prevent from becoming zero and thus being totally ignored
in the distance function. This scheme used by DSSOM has the advantage of adjusting only the
parameter β , instead of the three parameters found in Kangas et al. (1990).

Still, the self-organization process of DSSOM has a global relevance vector, ρ , to allow
more than one node to win a competition for a given input pattern, which is necessary to perform
subspace clustering tasks. This vector penalizes the dimensions already considered by previous
winners, and it is updated as per Equation 3.6 (Bassani & Araújo, 2012).

ρi = ρi (1−ωki) , i = 0,1,2....,m,
�
 �	3.6

where ωki is i-th component of the relevance vector and k is the index of the winner node.
After updating ρ , while there is the chance of more possible winners existing (controlled

by a specific criterion), the DSSOM continues looking for another winner by applying the global
relevance vector, instead of the relevance vector of each node, in the related equations (Bassani
& Araújo, 2012). Also, during clustering, if the activation produced by an input pattern is lower
than a defined threshold, this pattern is considered as noise.

3.2 LOCAL ADAPTIVE RECEPTIVE FIELD DIMENSION SELECTIVE

SELF-ORGANIZING MAP - LARFDSSOM

Fixed topology maps such as DSSOM are good tools for data visualization. However,
in certain kinds of problems, there is a need to add nodes into the map as more data becomes
available, improving incremental learning. In addition, modifying neighborhood relationships
during training allows the map to fit best the topology presented in the data. Several models of
time-varying structure have been proposed in the literature, such as Growing Neural Gas (GNG)
(Kunze & Steffens, 1995), Growing When Required (GWR) (Marsland et al., 2002) and Local
Adaptive Receptive Field Self-Organizing Map (LARFSOM) (Araujo & Rego, 2013).
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The model proposed by Bassani & Araujo (2015), called Local Adaptive Receptive
Field Dimension Selective Self-Organizing Map (LARFDSSOM), is a SOM with time-varying
structure based on DSSOM and LARFSOM. It takes advantage of the characteristics of both
models. As in DSSOM, the nodes can apply different relevances to the input dimensions, and
as in LARFSOM, the map only grows when new nodes are necessary, and the receptive field
of the nodes is adapted during the self-organization process. The general operation of the map
comprises three phases: 1) organization; 2) convergence; and 3) clustering.

In the organization phase, the nodes compete to form clusters of randomly chosen
input patterns. The winner of a competition is the most active node according to a radial
basis function, with the receptive field adjusted as a function of the local variance of the input
patterns. The cooperation step is performed by adjusting the neighbors of the winner node. In
LARFDSSOM, the neighborhood is formed by nodes that take into account a similar subset of
the input dimensions (Bassani & Araujo, 2015). The competition and cooperations steps are
repeated for a limited number of epochs. During this process, the nodes that do not win for a
minimum number of patterns are removed from the map.

The convergence phase starts right after the organization. Here, the nodes are adjusted
and removed when required, as in the first phase. However, there is no insertion of new nodes
into the map. This phase finishes when a defined number of interactions is reached. When the
convergence phase finishes, the map is ready to cluster input patterns. As in DSSOM, there is a
feature of noise detection, where inputs that result in an activation lower than a threshold for a
particular node are considered as noise, and the map does not cluster it. Also, LARFDSSOM
can handle both subspace and project clustering.

Similarly to DSSOM, each node j in LARFDSSOM represents a cluster and is associated
with three m-dimensional vectors, where m is the number of input dimensions: ccc j = {c ji, i =

1, · · ·,m} is the center vector that represents the prototype of the cluster j in the input space;
ωωω j = {ω ji, i= 1, · · ·,m} is the relevance vector in which each component represents the estimated
relevance, a weighting factor within [0, 1], that the node j applies for the i-th input dimension;
and δδδ j = {δ ji, i = 1, · · ·,m} is the distance vector that stores a moving average of the observed
distance between the input patterns xxx and the center vector |xxx− ccc j(n)|. The δδδ vector is used
solely to compute the relevance vector, as in Bassani & Araújo (2012).

The winner node in LARFDSSOM, as said before, is the node that presents the highest
activation value in response to the input pattern, according to Equation 3.7.

s1(xxx) = argmax
j
[ac(Dω(xxx,ccc j),ωωω j)].

�
 �	3.7

The activation function ac(Dω(xxx,ccc j) (Equation 3.8) of a node is calculated as a radial
basis function of the weighted distance Dω(xxx,ccc j) with the receptive field adjusted as a function
of the norm of its relevance vector.
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ac(Dω(xxx,ccc j),ωωω jjj) =

m
∑

i=1
ω ji

m
∑

i=1
ω ji +Dω(xxx,ccc j)+ ε

,
�
 �	3.8

where ε is a small value to avoid division by zero and Dω(xxx,ccc j) (Equation 3.9) is a weighted
distance equivalent to the one used in DSSOM.

Dω(xxx,ccc j) =

√
m

∑
i=1

ω ji(xi−w ji)
2.

�
 �	3.9

Analogously to LARFSOM (Araujo & Rego, 2013), the LARFDSSOM has an activation
threshold at that controls when a new node must be inserted into the map. If the activation
computed for the winner is below at , a new node is created. Otherwise, the winner and its
neighbors are updated by Equations 3.10, 3.11, and 3.12.

Firstly, LARFDSSOM considers two fixed learning rates: eb ∈]0,1[ and en ∈]0,eb[. With
the former applied to winners and the latter to neighbors. The Equation 3.10 shows how the
prototype vector ccc j is adjusted, where e can be replaced by the appropriate constant learning rate
(Bassani & Araujo, 2015).

ccc j(n+1) = ccc j(n)+ e(xxx− ccc j(n)),
�
 �	3.10

Secondly, akin to DSSOM, LARFDSSOM computes the relevance vector through the
moving average of the observed distance between the input pattern and the current center vector
ccc j, as shown in Equation 3.11.

δδδ j(n+1) = (1− eβ )δδδ j(n)+ eβ (|xxx− ccc j(n)|),
�
 �	3.11

where β ∈]0,1[ controls the rate of change of the moving average, e, as in Equation 3.10, can
be replaced by the adequate learning rate, and |xxx− ccc j(n)| denotes the absolute value of the
components, not the norm.

After updating the distance vector, the adjusting of the relevance vector is calculated
according to an inverse logistic function defined by Equation 3.12.

ω ji =


1

1 + exp

(
δ jimean−δ ji

s(δ jimax−δ jimin)

) if δ jimin 6= δ jimax

1 otherwise,

�
 �	3.12

where δ jimax, δ jimin, δ jimean are the maximum, the minimum, and the mean of the components
of the distance vector δδδ j, respectively. The parameter s > 0 controls the slope of the logistic
function (Bassani & Araujo, 2015).

Moreover, the neighborhood of LARFDSSOM can be better defined as per Equation
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3.13, where two nodes are connected if they cluster patterns in similar subspaces (Bassani &
Araujo, 2015).

nodes i and j are

connected,
∥∥ωωω iii−ωωω jjj

∥∥< minwd

disconnected, otherwise,

�
 �	3.13

where minwd is a connection threshold that defines the required level of similarity between the
relevance vectors of two nodes for them to be connected. When minwd < 0, no connections are
created, when minwd > 1, the map is fully connected, and when minwd = 0.5, only pairs of nodes
with differences up to half the maximum are connected. Bassani & Araujo (2015) define its
standard value as 0.5.

Furthermore, each node j in the map stores a variable wins j that accounts for the number
of wins of this node since the last reset. A reset occurs after age_wins competitions. This is
the moment when the nodes that present a number of wins below the limit l p×age_wins are
removed from the map, where lp is a parameter representing the lowest percentage of wins
allowed for a node in the map. For instance, if lp is set to 0.01, a node must win at least 1% of
the competitions; otherwise, it will be removed from the map in the next reset. After the removal,
the number of wins of the remaining nodes is reset to zero.

In the clustering step of LARFDSSOM, if the activation value produced by a winner
node for a particular input pattern is below the threshold at , this pattern is considered as an
outlier. In summary, the LARFDSSOM improves some qualities of DSSOM by introducing
three significant modifications: the time-varying structure, the dynamic of nodes removal and a
neighborhood concerning only nodes that share similar subspaces. Also, it is still able to perform
subspace and projected clustering tasks (Bassani & Araujo, 2015).

3.3 GENERALIZED RELEVANCE LEARNING VECTOR QUANTIZA-

TION - GRLVQ

Generalized Relevance Learning Vector Quantization (GRLVQ), introduced by Hammer
& Villmann (2002), is a pattern classification algorithm that generalizes its precursor, the
Generalized Learning Vector Quantization (GLVQ) (Sato & Yamada, 1996), that is based on
simple Hebbian learning and leads to worse and unstable results when applied to noisy real-world
data. The GRLVQ incorporates to GLVQ an intuitive update rule to measure relevances of the
input data dimensions and to allow efficient input pruning (Hammer & Villmann, 2002).

Moreover, the GRLVQ is proposed to be used in high-dimensional real-world datasets as
the weighting factors allow the model to approximately determine the intrinsic data dimension-
ality, i.e., the relevances identify the dimensions irrelevant and/or noise commonly present in
such datasets. At training time, the GRLVQ discriminates the influence of different components
of the input, increasing or decreasing its relevance (Hammer & Villmann, 2002; De Araujo &
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Guimaraes, 2016), so forth attenuating the curse of dimensionality (Köppen, 2000).
The training algorithm adapts the prototypes wwwi in such a way that for each class c ∈

{1, ...,C}, the corresponding prototypes represent the class as accurately as possible. To do so,
the difference of the samples belonging to the c-th class and the receptive field (the same as
defined in Equation 2.7) of the corresponding prototypes should be minimized for each class.
Thus, given xxxi as a m-dimensional training vector, and yi, its class label, denote by µλ (xxxi)

some function which presents a negative value if the input vector is classified correctly, and a
positive value, otherwise. Also, consider f : R→ R as a monotonically increasing function. In
considering this, the general framework scheme of GRLVQ consists on minimizing the cost
function S via a stochastic gradient descent, as expressed in Equation 3.14 (Hammer & Villmann,
2002).

S =
m

∑
i=1

f
(
µλ (xxxi)

)
,

�
 �	3.14

where f is the sigmoidal function leading to a sgd(xxxi) = (1+exp(−xxxi))
−1, and µλ (xxxi) is given by

Equation 3.15 in which d+
λ
(xxxi) and d−

λ
(xxxi) are adaptive weighting distances to the next prototype

labeled with yi and the next prototype labeled with a label not equal to yi, respectively. This
yields a particular powerful and noise tolerant behavior since it combines adaptation near the
optimum Bayesian borders whereas prohibiting possible divergences (Hammer & Villmann,
2002; De Araujo & Guimaraes, 2016).

µλ (xxxi) =
d+

λ
(xxxi)−d−

λ
(xxxi)

d+
λ
(xxxi)+d−

λ
(xxxi)

.
�
 �	3.15

The goal of adjusting the P prototypes to represent the data accurately, despite the
closeness of data vectors belonging to different classes, is done by finding the nearest prototype
wwwr+ from the same class of the training vector, as well as the nearest prototype wwwr− from a
different class. Then, in the update step, wwwr+ is adjusted to get closer to the training vector xxxi,
whilst wwwr+ is pushed away, according to Equation 3.16 (Hammer & Villmann, 2002; Nova &
Estévez, 2014).

wwwr+(t +1) = wwwr+(t)+2×∆wwwr+, ∆wwwr+ = ε
+× f ′(µλ (xxxi))×ξ

−×
∂d+

λ
(xxxi)

∂www+
i

,

wwwr−(t +1) = wwwr−(t)−2×∆wwwr−, ∆wwwr− = ε
−× f ′(µλ (xxxi))×ξ

+×
∂d−

λ
(xxxi)

∂www−i
,

�
 �	3.16

where e+ and e− are respectively the learning rates to the same and different class nearest
prototypes, f ′ is the sgd(xxxi) mentioned before, and ξ− and ξ+ are weighted derivative distances
as per Equation 3.17.
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ξ
− =

2×d−
λ
(xxxi)(

d+
λ
(xxxi)+d−

λ
(xxxi)
)2 , ξ

+ =
2×d+

λ
(xxxi)(

d+
λ
(xxxi)+d−

λ
(xxxi)
)2 .

�
 �	3.17

At this point, the GRLVQ introduces the weight vector λ that stores the relevance of each
input dimension, a value that ranges from zero (irrelevant) to one (uttermost relevant), hence
turning data preprocessing unnecessary. To avoid instabilities for the weighting factors, each
component of λλλ is initialized by λi = 1/m, where m is the number of input dimensions, and
a normalization to obtain

∥∥λλλ
∥∥ = 1 is added. In each update step, the weight vector λλλ is also

updated according to a learning procedure that follows the main update principles for prototype
adjustments, i.e., it can be interpreted in a Hebbian way, as defined by Equation 3.18 (Hammer
& Villmann, 2002).

λλλ (t +1) = λλλ (t)−∆λλλ , ∆λλλ =−ε
λ × f ′(µλ (xxxi))× (ξ+×d+

λ
(xxxi)−ξ

−×d−
λ
(xxxi)),

�
 �	3.18

where ελ is the learning rate for the relevance weights.
After each update, the weight vector λλλ is normalized as mentioned before, and all of

the learning rates are linearly decreased according to Equation 3.19. Also, in order to keep λλλ

with positive values, negative relevances are replaced by zero. This process is repeated until the
model converges or some other stopping criteria is reached. Moreover, the computational cost of
GRLVQ depends on the number of prototypes, P, input dimensions, m, and epochs, which is
usually a fixed previously defined number (De Araujo & Guimaraes, 2016).

ε(t) =
ε(0)

1+ τ× (t− t0)

�
 �	3.19

The characteristics and ideas of the models presented in this chapter arouse the interest
in studying a hybrid environment where the advantages and concepts of each of them could
be explored in combination, considering the supervised and unsupervised contexts, to perform
Semi-Supervised Learning tasks. This results in two proposed models that will be discussed
further in Chapter 4 and Chapter 5.
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4
SEMI-SUPERVISED SELF-ORGANIZING MAP - SS-SOM

Semi-Supervised Self-Organizing Map is a semi-supervised hybrid LVQ-SOM, based on
LARFDSSOM (Bassani & Araujo, 2015), with a time-varying structure (Araujo & Rego, 2013)
and two different ways of learning. As in LARFDSSOM, it is possible for SS-SOM that the
nodes consider different relevances for the input dimensions and adapt its receptive field during
the self-organization process. More precisely, SS-SOM can learn in a supervised or unsupervised
way. It switches between these two modes during the self-organization process according to the
availability of the information about the class label for each input pattern. To achieve this, we
modified the LARFDSSOM to include concepts from the standard LVQ (Kohonen, 1995) when
the class label of some input pattern is given.

The rest of this Chapter is organized as follows: Section 4.1 presents the general opera-
tions of SS-SOM. Section 4.2 introduces the aspects in common for both operating modes of the
model. Section 4.3 and Section 4.4 describe in details the unsupervised and supervised learning
procedures, respectively. Later on in Section 4.5, the convergence phase is introduced. Moreover,
Section 4.6 shows how the clustering and classification processes are conducted in SS-SOM.
Section 4.7 presents Batch SS-SOM, an extension of the proposed model, SS-SOM. Finally,
Section 4.8 summarizes the parameters of the model, and Section 4.9 brings some preliminary
results and conclusions.

4.1 OPERATION OF SS-SOM

Likewise the LARFDSSOM, the operation of SS-SOM consists of three phases: 1)
organization (Algorithm 1); 2) convergence (Algorithm 5); and 3) clustering or classification
(Algorithm 6).

In the organization phase, after the network initialization, the nodes start to compete to
form clusters of randomly chosen input patterns. There are two different forms to decide who is
the winner of a competition, which nodes need to be updated and when a new node needs to be
inserted. If the class label of the input pattern is provided, the supervised mode (Section 4.4) is
employed to adapt the nodes, otherwise, the unsupervised mode (Section 4.3) is used. The model
can also be trivially modified to incorporate reinforcement learning, though this is left for future
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Algorithm 1: SS-SOM
1 Initialize parameters at , lp, β , age_wins, eb, en, s, minwd, epochmax, ew, Nmax;
2 Initialize the map with one node with ccc j initialized at the first input pattern xxx0, ωωω jjj ←

1, δδδ jjj ← 0, wins j ← 0 and class j ← noClass or class(xxx0) if available;
3 Initialize the variable nwins← 1;
4 for epoch← 0 to epochmax do
5 Choose a random input pattern xxx;
6 Compute the activation of all nodes (Equation 3.8);
7 Find the winner s1 with the highest activation (as) (Equation 3.7);
8 if xxx has a label then
9 Run the SupervisedMode(xxx, s1) (Algorithm 4);

10 else
11 Run the UnsupervisedMode(xxx, s1) (Algorithm 3);

12 if nwins = age_wins then
13 Remove nodes with wins j < lp × age_wins;
14 Update the connections of the remaining nodes (Equation 4.1);
15 Reset the number of wins of the remaining nodes:
16 wins j ← 0;
17 nwins← 0;

18 nwins← nwins + 1;

19 Run the Convergence Phase (Algorithm 5);

work. As in LARFDSSOM, the cooperation is performed by adjusting the neighborhood around
the winner node. However, the neighborhood of SS-SOM takes into account not only a similar
subset of the input dimensions but also the class labels, connecting only nodes with the same
class label or unlabeled nodes. As usual, the adaptation occurs by adjusting the weight vectors
of the map. The equations will be presented following in this Chapter. Thereby, the competition,
adaptation and cooperation steps are repeated for a limited number of epochs. In the meantime,
with given a periodicity controlled by a parameter called age_wins, the nodes that do not win for
a minimum number of patterns are removed from the map, as in LARFDSSOM.

The convergence phase starts after the organization phase. Here, the nodes are also
updated and removed when necessary, similarly to the way conducted in the first phase. The
difference is the fact that there is no insertion of new nodes. Moreover, this phase finishes
the node removal cycle left by the organization phase and runs an additional cycle to ensure
convergence. This phase in SS-SOM is pretty similar to the convergence phase of LARFDSSOM.

After finishing the convergence phase, the map can cluster and classify input patterns.
Depending on the amount and distribution of labeled input patterns presented to the network
during the training, after the convergence phase the map may have:

1. All the nodes labeled;

2. Some nodes labeled;
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3. No nodes labeled.

For the first case, the clustering and classification are straightforward: each test pattern is
associated with the label of the node with the highest activation. For the second case, if the node
with the highest activation has no class, the SS-SOM continues looking for another node with a
defined class label, and an activation above the threshold at . For the third and last case, we can
identify the clusters of the input test patterns, but not their classes.

It is important to mention that in this work, only the task of projected clustering is
investigated, i.e., each input pattern is assigned to a single cluster, though the proposed model
supports subspace clustering as well.

The next sections describe all the processes involving both unsupervised and supervised
operation modes, as well as how clustering and classification are conducted. After that, the
parameters analysis and tuning are discussed.

4.2 ASPECTS IN COMMON FOR BOTH MODES

Indeed, to be consistent, each node in the map must have the same structure independently
of the operating mode. Also, both supervised and unsupervised learning procedure share some
aspects concerning the operations that are performed during the training time. All of those
aspects will be discussed in the next Sections.

4.2.1 Structure of the Nodes

Exactly as in LARFDSSOM, each node j in SS-SOM represents a cluster and is associated
with three m-dimensional vectors. They are: ccc j = {c ji, i = 1, · · ·,m}, the center vector that
represents the prototype of the cluster j in the input space; ωωω j = {ω ji, i = 1, · · ·,m}, the relevance
vector in which each component represents the estimated relevance, a weighting factor within [0,
1], that the node j applies for the i-th input dimension; and δδδ j = {δ ji, i = 1, · · ·,m}, the distance
vector that stores the moving average of the observed distance between the input patterns xxx and
the center vector. Moreover, δδδ is used exclusively to compute the relevance vector.

4.2.2 Activation of the Nodes

The activation of a node in SS-SOM is calculated as in LARFDSSOM, with a radial basis
function of the weighted distance Dω(xxx,ccc j) (Equation 3.9) that has its receptive field adjusted
as a function of its relevance vector. The activation grows as the distance decreases and as the
relevances increases. Equation 3.8 shows the activation function.
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4.2.3 Node Update

In SS-SOM, in order to update the vectors associated with the nodes (the winner, the
neighbors or the winner of a wrong class), a fixed learning rate is used, depending on the
undergoing procedure (Algorithm 4 or Algorithm 3). Algorithm 2 shows how the update occurs
in SS-SOM. The nodes will be updated with the same equations ofLARFDSSOM given a
learning rate.

Algorithm 2: Node Update of of SS-SOM
Input :Node s, Learning Rate lr

1 Function UpdateNode(s, lr):
2 Update the distance vector δδδ s according to lr (Equation 3.11);
3 Update the relevance vector ωωωs (Equation 3.12);
4 Update the weight vector cccs according to lr (Equation 3.10);

4.2.4 Node Removal

The parameter age_wins controls the periodicity of nodes removal. Whenever age_wins

is reached, a reset occurs (lines 12-17 in Algorithm 1), it means that any nodes which do not
win at least the minimum percentage of the competitions lp × age_wins will be removed. To
manage this, each node j in SS-SOM stores a variable wins j that represents the number of the
node victories since the last reset. After each reset, the number of victories of the remaining
nodes is set to zero.

4.2.5 Neighborhood Update

In SS-SOM, the neighborhood is formed by nodes with the same class or nearby unlabeled
nodes that apply similar relevances for the input dimensions. So that, a connection between two
nodes means they cluster patterns with the same class or at least in similar subspaces. Equation
4.1 considers these similarities between the relevances and classes of every pair of nodes to
control this behavior.

nodes i and j are



connected, if ( class(i) = class( j) or

class(i) = noClass or

class( j) = noClass )

and
∥∥ωωω iii−ωωω jjj

∥∥< minwd

disconnected, otherwise

�
 �	4.1
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4.3 UNSUPERVISED MODE

Given an unlabeled input pattern, we look for a winner node disregarding their class
labels. Therefore, as in LARFDSSOM (Equation 3.7), the winner of a competition is the node
that is the most activated according to a radial basis function with the receptive field adjusted as
a function of its relevance vector.

Similarly to LARFDSSOM, SS-SOM has an activation threshold at . According to this,
if the activation of the winner is lower than at , a new node is inserted into the map at the position
of the input pattern since the existing winner is not close enough. Otherwise, the winner and its
neighbors are updated moving them closer to the input pattern (Section 4.2.3). Thereby, as in
LARFDSSOM, two fixed learning rates are considered : 1) eb ∈]0,1[ for the winner node; and 2)
en ∈]0,eb[ for its neighbors. Algorithm 3 presents this procedure.

Algorithm 3: Unsupervised Mode of SS-SOM
Input :Input pattern xxx and the first winner s1;

1 if as1 < at and N < Nmax then
2 Create a new node j and set: ccc j ← xxx, ωωω j ← 1, δδδ j ← 0, wins j ← 0 and class j ←

noClass;
3 Connect j to the other nodes as per Equation 4.1;
4 else
5 Update the winner node and its neighbors: UpdateNode(s1, eb),

UpdateNode(neighbors(s1), en) (Algorithm 2);
6 Set winss1 ← winss1 + 1;

4.4 SUPERVISED MODE

In order to incorporate the supervised learning mode, each node in the map can be
associated with a class label. Hence, when a labeled input pattern is given, we treat it differently.
Algorithm 4 presents this procedure.

To improve the performance by exploring the information provided by the labeled pat-
terns, SS-SOM takes the labels into account when looking for a winner, unlike the unsupervised
mode that only considers the activation. If the most activated node s1 has the same class of
the input pattern or an undefined class (line 1 in Algorithm 4), a very similar procedure to the
unsupervised mode (Section 4.3) is run (lines 2 to 9). The difference, in this case, is the fact
that the class of s1 is set as the same as the input pattern xxx, as well as update its connections.
Otherwise, if the winner node and the input pattern have different classes, SS-SOM continues
trying to find another winner matching the following criteria (line 11): 1) has the same class
of the input pattern or an undefined class, and 2) an activation higher than at . This procedure
simulates an inhibition of the nodes with different classes.
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Algorithm 4: Supervised Mode of SS-SOM
Input :Input pattern xxx and the first winner s1;

1 if classs1 = class(xxx) or classs1 = noClass then
2 if as1 < at and N < Nmax then
3 Create new node j and set: ccc j ← xxx, ωωω j ← 1, δδδ j ← 0, wins j ← 0 and class j

← class(xxx);
4 Connect j to the other nodes as per Equation 4.1;

5 else if as1 ≥ at then
6 Update the winner node and its neighbors: UpdateNode(s1, eb),

UpdateNode(neighbors(s1), en) (Algorithm 2);
7 Set classs1 ← class(xxx);
8 Update s1 connections as per Equation 4.1;
9 Set winss1 ← winss1 + 1;

10 else
11 Try to find a new winner s2 with noClass or the same class of xxx, and an

activation as2 ≥ at ;
12 if s2 exists then
13 Update the new winner node, its neighbors and the previous wrong winner:

UpdateNode(s2, eb), UpdateNode(neighbors(s2), en) and UpdateNode(s1,
−ew) (Algorithm 2);

14 Set winss2 ← winss2 + 1;

15 else if N < Nmax then
16 Create new node j and set: ccc j ← xxx, ωωω j ← 1, δδδ j ← 0, wins j ← 0 and class j

← class(xxx);
17 Connect j to other nodes as per Equation 4.1;

If any node fulfills these conditions (line 12 in Algorithm 4), a new winner s2 is said
to be found. Then, s2 and its neighbors will be updated as in the unsupervised mode (Section
4.3). However, the fact that s1 was considered a "wrong" winner indicates the need to push it
away from this input pattern. Therefore, similarly as in the LVQ, we push s1 away from the
input pattern with a fixed learning rate of −ew. This procedure is presented in lines 13 and 14 of
Algorithm 4. Otherwise, if there is no new winner and the maximum number of nodes in the
map has not been reached, a new node is inserted into the map at the same position and with the
same class of the input pattern xxx (lines 16 and 17 of Algorithm 4).

4.5 CONVERGENCE

The organization phase does not guarantee that the remaining nodes in the map are well
positioned and connected as expected, according to the distribution, classes, and relations of
the input data. Therefore, they may still need to be updated, for instance, to represent the input
patterns previously clustered by removed nodes. In the convergence phase, the self-organization
process continues, but the map is not allowed to create new nodes. It can be viewed as a
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reorganization process. Also, during the self-organization, the model may not reach the age_wins

value, and hence the nodes may not achieve the lowest percentage of wins so that they also have
to be removed. So, the reorganization finishes this cycle. After this process, the model runs
another cycle of age_wins to ensure convergence with the remaining nodes. The Algorithm 5
describes in details how the convergence phase is carried on.

Algorithm 5: Convergence Phase of SS-SOM
1 Nmax← N;
2 while nwins < age_wins do
3 Choose a random input pattern xxx;
4 Compute the activation of all nodes (Equation 3.8);
5 Find the winner s1 with the highest activation (as) (Equation 3.7);
6 if xxx has a label then
7 Run the SupervisedMode(xxx, s1) (Algorithm 4);
8 else
9 Run the UnsupervisedMode(xxx, s1) (Algorithm 3);

10 if nwins = age_wins then
11 Remove nodes with wins j < lp × age_wins;
12 Update the connections of the remaining nodes as per Equation 4.1;
13 Reset the number of wins of the remaining nodes:
14 wins j ← 0;
15 nwins← 0;

16 nwins← nwins + 1;

17 nwins← 0;

In the algorithm, Nmax is set to the current number of nodes in the map (line 1). Then, the
self-organization continues as usual. Finally, as said before, after age_wins is reached, a reset
occurs in combination with a node removal and a reset of node wins. Lastly, the algorithm is
rerun.

4.6 CLUSTERING AND CLASSIFICATION WITH SS-SOM

After the organization and convergence phases of SS-SOM, the center vectors ccc j and the
relevance vectors ωωω jjj of each node in the map can be used for clustering and classification of the
test patterns. Algorithm 6 presents this procedure.

Each node in the map is associated with an index representing a cluster. The purpose
of SS-SOM is to work only with projected clustering problems at first hand. So that, the test
patterns are associated only to one cluster each. It means that we need to try to find the correct
winner for each test pattern. To achieve this, as in Algorithm 4, we use the most active node
as the winner, but if it has no defined class, SS-SOM continues trying to find another winner
candidate with a defined class and an activation above at . If it exists, we use it to cluster and its
label to classify the test pattern. Otherwise, the most active node is used only for clustering the
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input test pattern, and the model will not be able to classify it. All in all, if none of the nodes
produces an activation equal to or above the threshold at for a particular pattern, it is considered
as an outlier or noise.

Algorithm 6: Clustering and Classification with SS-SOM
1 foreach test input pattern xxx do
2 Present xxx to the map;
3 Compute the activation of all nodes (Equation 3.8);
4 Find the first winner s1 with the highest activation (as) (Equation 3.7);
5 if as ≥ at then
6 s f ← s1;
7 if class(s f ) = noClass then
8 Try to find a new winner s2 with a defined class and an activation above

at ;
9 if s2 exists then

10 s f ← s2;

11 Assign xxx to the cluster of the winner node s f ;
12 Set the predicted class of xxx to be the same class of the winner node s f (it

could be defined or undefined);
13 else
14 Assign xxx to the outliers set;

4.7 BATCH SS-SOM

According to LeCun et al. (2015), it is expected that unsupervised and semi-supervised
learning become far more important in the longer term. The successes of purely supervised
learning are overshadowing them. So that, at the current stage of research, it would be of great
importance to make possible an approach capable of making use of the advances that came with
the rising of Deep Learning and also stimulate the development of semi-supervised approaches
in a deep learning context.

To make it possible for SS-SOM to take advantage of the parallelism of a Graphics
Processing Units (GPU) in its training, the Batch SS-SOM was developed. It was implemented
in the PyTorch framework, and introduces essential modifications to the original SS-SOM model.
Such changes allowed SS-SOM to use mini-batch training and to be more integrated with other
Deep Learning approaches, that commonly use the same framework and structure.

First, when a mini-batch is given to the model, it is separated into two different mini-
batches: 1) the unsupervised mini-batch; and 2) the supervised mini-batch, as shown by the first
two columns of Figure 5. For the first case, the learning process continues straightforwardly
to the unsupervised mini-batch learning procedure that will be discussed further in this current
section. On the other hand, the latter case results in three distinct situations, illustrated by the
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last column of Figure 5, that must be handled differently after finding the winner node for each
sample contained in the supervised mini-batch (as discussed in Section 4.4):

1. Figure 5-A: A node with a not defined class is the winner for a labeled sample;

2. Figure 5-B: A node with a defined class is the winner for samples of the same class;

3. Figure 5-C: A node with a defined class is the winner for samples of different classes,
including or not its class

Figure 5: The basic operation performed by Batch SS-SOM when a mini-batch is given, and its
resulting cases.

Figure 6 shows how each of these mentioned situations are handled. First, in the Figure
6-A workflow, the actions are to set the node class to be the same as the input pattern and then
update it towards such input just as in Section 4.4. Second, in Figure 6-B, it is first necessary
to compute the average vector considering all the samples that are under this situation. To do
so, the average vector θθθ is calculated according to Equation 4.2. Here, recap the unsupervised
batch from Figure 5, that is meant to be sent straightforwardly to the unsupervised learning
procedure. It is done by sending the unlabeled average vector θθθ . So in the end, what is sent is a
one-dimensional vector.

θθθ =
1
S

S

∑
k=1

xxxk,
�
 �	4.2

where S is the number of samples xxx from case B. The resulting vector θθθ is then sent to the usual
supervised update procedure of SS-SOM, where the target label is the common class of the
samples (Section 4.4).
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Third, the case ilustrated in Figure 6-C is handled as follows: for all the classes contained
in this subset of samples, every different class duplicates the original winner node j by preserving
the centroid vector ccc j, the distance vector δδδ j and the relevance vector ωωω j, but setting the class
of the new duplicated node to be the same as the current treated class, as well as setting its
number of victories to zero. After that, for each class l found in the current subset, a vector θθθ l is
calculated and the respective duplicated node is updated using both θθθ l and l, suchlike in Figure
6-B, whereas the original winner node is updated using its corresponding θθθ and class.

Still, notice that when this situation occurs for an unlabeled winner node j, the first
calculated θθθ vector and its related class are used to update j as in Figure 6-A. Finally, all the
operations executed in the Batch SS-SOM are performed in parallel on the GPU, which optimizes
the computational cost and allows the model to be applied to more complex tasks and datasets.

Figure 6: How to handle each distinct situation from the Batch SS-SOM operation when a
mini-batch is given.

4.8 A SUMMARY OF THE PARAMETERS

SS-SOM inherits all parameters from LARFDSSOM and includes a new parameter
called ew. This parameter provides a specific learning rate for the update of wrong winners, as
described in Section 4.4. It means that SS-SOM has 11 parameters to be set up. Despite this
being a high number of parameters, a sensitivity analysis shown in Bassani & Araujo (2015)
revealed that only at and lp present a high impact on the results of LARFDSSOM, and the
SS-SOM kept this characteristic. Therefore, we can keep the other parameters values fixed inside
defined ranges, given their marginal influences, including the number of epochs. The parameter
at is crucial since it defines the receptive field of the nodes. During the training, it affects the
number of nodes inserted in the map. During the clustering and classifying procedure, it can be
seen as an outlier threshold that controls a noise filtering mechanism. The parameter lp defines
the minimum percentage of input patterns that a node has to cluster for not being removed from
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the map in a certain epoch. This parameter is dataset dependent and has a substantial impact on
the results. The other parameters will be discussed further in the next sections.

4.9 PRELIMINARY EXPERIMENTAL RESULTS AND CONCLUSION

This chapter presented the SS-SOM, an approach for classification and clustering with
SSL. This section presents the preliminary results of SS-SOM in order to establish a chronological
order of the research, once another model was developed to address some aspects of SS-SOM
aiming to enhance its capabilities. More details of the experiments done with SS-SOM will be
given in Chapter 6. For now, the preliminary experiments compare the classification performance
of SS-SOM against the following semi-supervised models: Label Spreading (Zhou et al., 2004)
and Label Propagation (Xiaojin & Zoubin, 2002). They were chosen due to their popularity
and connection to several other important algorithms, such as Markov random walks algorithms
(Szummer & Jaakkola, 2002) and mean field approximation (Peterson, 1987; Jordan et al., 1999).

Two real-world datasets (see Section 2.6.2) and a 3-times 3-fold cross-validation were
used, while training and testing the model 500 times for each fold with different parameter
values sampled from the parameter ranges presented in Table 3 and Table 4, according to a LHS
(McKay et al., 1979; Helton et al., 2005). Also, for studying the effects of different levels of
supervision, the models were trained with the following percentages of label availability: 1%,
5%, 10%, 25%, 50%, 75% and 100%. The best accuracy achieved by each method in each fold
was recorded for each dataset varying the supervision percentage.

The results presented in Figure 7 illustrate the robustness of SS-SOM, even in situations
in which only a small number of labeled data is available. Its performance is superior to other
models except when 100% of the labels are given, but it still achieves comparable results.

(a) (b)

Figure 7: Best mean accuracy and standard deviation as function of the percentage of supervision
on (a) Pendigits and (b) Vowel datasets
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As said in Section 4.8, SS-SOM has 11 parameters, but only two of them present a high
impact on the results. In Figure 8, the at was chosen to illustrate this behavior. It is clear that
it is a crucial parameter. On the other hand, Figure 9 shows the results as a function of the eb

parameter, in which the results suffer marginal influences in comparison with the behavior of at .
The blue dots in the figures indicates the accuracy obtained with SS-SOM as a function of the
given parameter value, whereas the red lines are the linear fits to the data, which is a common and
effective way of studying the sensitivity of parameters, as Iman & Helton (1988) demonstrates.
It is possible to identify trends in parameter values as a function of the obtained metric values
using this technique, as it is observed with the parameter at . Note that such a strong dependency
of parameter presents difficulties for the applicability of the model, since it loses generalization
power, and ends up becoming dependent on the data which it was tuned for.

Moreover, SS-SOM also has a low sample efficiency (Wang et al., 2016). Sample
efficiency denotes the amount of experience that an algorithm needs to learn. The aim of having
a sample efficient method is to reduce the number of simulation steps (i.e., samples of the model
or environment). Thus, sample efficient methods are methods which learn faster by only using a
small number of samples or the important ones. Since the framework of SS-SOM ignores several
samples in cases where the map is full, and the winning node is not close enough from an input
pattern, the sample efficiency is reduced because a larger number of samples became necessary
for the model to learn. The same behavior is found in LARFDSSOM. Those are the reasons
behind the development of the next proposed model that will be shown in Chapter 5.

(a) (b)

Figure 8: Preliminar sensitivity analysis with a scatter plot of the Accuracy obtained with
SS-SOM as a function of parameter at on (a) Pendigits and (b) Vowel datasets
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(a) (b)

Figure 9: Preliminar sensitivity analysis with a scatter plot of the Accuracy obtained with
SS-SOM as a function of parameter eb on (a) Glass and (b) Liver datasets
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5
ADAPTIVE LOCAL THRESHOLDS SEMI-SUPERVISED
SELF-ORGANIZING MAP - ALTSS-SOM

Adaptive Local Thresholds Semi-Supervised Self-Organizing Map is a SOM with Adap-
tive Local Thresholds (Jiang & Mojon, 2003) based on SS-SOM. Hence, being based on SS-SOM,
ALTSS-SOM can also learn in a supervised or unsupervised way depending on the availability of
labels, and maintains the general characteristics of its predecessors. However, it introduces new
behaviors on both sides, supervised and unsupervised, to allow a better usage, and consequently
a better understanding of the data statistics. By doing this, ALTSS-SOM aims at overcoming
the problems presented by SS-SOM, such as the high sensitivity to the parameters, and the low
sample efficiency. Additionally, with the proper changes, ALTSS-SOM targets achieving better
results for both classification and clustering tasks.

Therefore, the parameterized activation threshold (at) used in both previous methods
is replaced by an adaptive thresholding technique that takes into account the local variance to
provide the model the ability to learn the receptive field of each node. The objective is to estimate
optimal local regions in the space with respect to the distribuition of the input patterns xxx for each
node in the map. To do so, inspired by the Adam algorithm, a method for efficient stochastic
optimization that only requires first-order gradients with little memory requirement (Kingma &
Ba, 2014), ALTSS-SOM updates exponential moving averages of the distances between each
input pattern xxx and the centroid of the nodes for each dimension (the vector δδδ j in the algorithms).
In SS-SOM and LARFDSSOM, this estimate was done by using not only β but also the learning
rate e in equation (Equation 3.11). However, ALTSS-SOM modified this approach to use solely
the parameter β ∈ [0,1) for controling the exponential decay rate of the moving averages.

The moving averages themselves are estimates of the first moment (the mean) of the
distances between the input patterns and the centroids of the nodes. Because of that, such means
can be used as estimates of the uncentered variance of the nodes in each dimension. However,
these moving averages are initialized as vectors of zeros, leading to moment estimates that are
biased towards zero, especially during the initial steps, and when the decay rate is small (close
to 1) (Kingma & Ba, 2014). Still, according to Kingma & Ba (2014), this initialization bias
can be counteracted, resulting in a bias-corrected estimate δ̂δδ j. During the learning process, this
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bias-corrected estimate δ̂δδ j, together with the relevance vector ωωω j can be used as reject options
(Chow, 1970), determining whether or not an input pattern is in the receptive field of a winner
node.

The rest of this Chapter is organized as follows: Section 5.1 presents the operations
of ALTSS-SOM. Section 5.2 introduces the structure of the nodes in the model. Section 5.3
briefly discusses the way the competition step is carried. Section 5.4 and Section 5.5 present how
the bias-corrected moving averages are estimated, and how the local thresholds are computed,
respectively. Section 5.6 describes the process of updating the nodes in the map. Moreover,
Section 5.7 and Section 5.8 show in details both unsupervised and supervised learning procedures.
Later on, Section 5.9 explains the node removal step in ALTSS-SOM, whereas Section 5.10, the
neighborhood. Finally, Section 5.11 summarizes the parameters of the model, and Section 4.9
brings some preliminary results and conclusions.

5.1 OPERATION OF ALTSS-SOM

Similarly to SS-SOM and LARFDSSOM, the overall operation of the ALTSS-SOM
comprises three phases: 1) organization (Algorithm 7); 2) convergence; and 3) clustering or
classification.

Algorithm 7: ALTSS-SOM
1 Initialize parameters lp, β , age_wins, eb, en, s, minwd, epochmax, Nmax;
2 Initialize the map with one node with ccc j initialized at the first input pattern xxx0, ωωω j ←

1, δδδ jjj ← 0, δ̂δδ j ← 0, t j ← 0, wins j ← 0 and class j ← noClass or class(xxx0) if
available;

3 Initialize the variable nwins← 1;
4 for epoch← 0 to epochmax do
5 Choose a random input pattern xxx;
6 Compute the activation of all nodes (Equation 3.8);
7 Find the winner s1 with the highest activation (Equation 3.7);
8 if xxx has a label then
9 Run the SupervisedMode(xxx, s1) (Algorithm 11);

10 else
11 Run the UnsupervisedMode(xxx, s1) (Algorithm 10);

12 if nwins = age_wins then
13 Remove nodes with wins j < lp × age_wins;
14 Update the connections of the remaining nodes (Equation 4.1);
15 Reset the number of wins of the remaining nodes:
16 wins j ← 0;
17 nwins← 0;

18 nwins← nwins + 1;

19 Run the Convergence Phase;

In the organization phase, the network is initialized, and the nodes start to compete to
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form clusters of randomly chosen input patterns. The first node of the map is created at the
same position of the first input pattern. As in SS-SOM, there are two distinct ways to define the
winner of a competition, to decide when a new node must be inserted and when the nodes need
to be updated. However, in ALTSS-SOM, before a node is updated, it is necessary to decide if it
will affect the whole node structure or just the weighted averages and the relevance vectors. If
the input pattern class label is provided, it will be done in the supervised mode (Section 5.8),
otherwise, in the unsupervised mode (Section 4.3).

The neighborhood of ALTSS-SOM is defined as the same as in SS-SOM. Nonetheless, it
defines the nodes that will be adjusted together with the winner, thus outlining the cooperation
step. The competition and cooperation steps are repeated for a limited number of epochs, and
during this process, some nodes are removed periodically, conforming to a defined removal rule
that a node must win at least for a minimum number of patterns to continue in the map, as in
SS-SOM.

The convergence phase starts right after the organization process. In this phase, the nodes
are also updated and removed when required, like in the way conducted in the first phase but
with a slight difference: there is no insertion of new nodes. Finally, when the convergence phase
finishes, the map clusters and classifies input patterns. At this stage, as in the SS-SOM, there
are three possible scenarios: 1) all of the nodes have a defined representing class; 2) a mixed
scenario, with some nodes labeled and other not; and 3) none of the nodes labeled. The first
scenario will allow both classification and clustering tasks to be executed straightforwardly. The
second will add one more step to the process because if the most activated node does not have a
defined class, the algorithm continues trying to find a next highly activated node with a defined
class. The last scenario only provides the ability to cluster.

5.2 STRUCTURE OF THE NODES

In ALTSS-SOM, each node j in the map represents a cluster and is associated with four
m-dimensional vectors, where m is the number of input dimensions: The first three vectors, ccc j,
ωωω j, and δδδ j, are the same as defined in Section 4.2.1. Note, however, that δδδ in SS-SOM and
ALTSS-SOM can be seen as the biased first moment estimate. Because of that, ALTSS-SOM
introduces a fourth vector, δ̂δδ j = {δ̂ ji, i = 1, · · ·,m}, which is the bias-corrected first moment
estimate that the algorithm computes to counteract the bias towards zero of δδδ j, specifically at
the initial steps. The δ̂δδ j vector is used to compute the relevance vector ωωω j, and both of them
are used to approximate the variance of each node, taking into account how significant each
dimension is. Such variance is used to define local reject options during the learning process
every time that a new input pattern is presented to the map.
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5.3 COMPETITION

ALTSS-SOM tries to choose the winner of a competition as the most activated node
given an input pattern xxx, except in certain cases that will be discussed in Section 5.8, when the
label is available. In ALTSS-SOM, likewise in SS-SOM, the most activated node s(xxx) is defined
as per Equation 3.7, and the activation function is calculated according to a radial basis function
with the receptive field adjusted as a function of its relevance vector ωωω j, as shown in Equation
3.8.

5.4 ESTIMATING BIAS-CORRECTED MOVING AVERAGES

In ALTSS-SOM, the procedure that updates the distance vectors, as well as the relevance
vectors, is shown in the Algorithm 8.

Algorithm 8: Update Relevances
Input :Input pattern xxx, Node s

1 Function UpdateRelevances(xxx, s):
2 Set ts← ts + 1;
3 Update the distance vector δδδ s (Equation 5.1);
4 Update the corrected distance vector δ̂δδ s (Equation 5.2);
5 Update the relevance vector ωωωs (Equation 5.3);

The distance vectors are initialized as a vector of zeros and updated through a moving
average of the observed distance between the input pattern and the current center vector ccc j, as
per Equation 5.1:

δδδ j(n+1) = βδδδ j(n)+(1−β )(|xxx− ccc j(n)|),
�
 �	5.1

where β ∈ ]0,1] is the parameter that controls the rate of change of the moving average (i.e., the
exponential decay rate), and |xxx− ccc j(n)| denotes the absolute value applied to the elements of the
vectors.

In order to correct the bias towards zero of δδδ j at the initial timesteps, caused by initializing
the moving averages with zeros, as in the Adam algorithm (Kingma & Ba, 2014), ALTSS-SOM
divides it by the term

(
1−β t j

)
, where t j indicates the current timestep of each node j. In sum,

the bias-corrected moving averages vectors are updated at every node timestep according to the
Equation 5.2:

δ̂δδ j(n+1) =
δδδ j(n)
1−β t j

�
 �	5.2

To obtain accurate information about the relevance of each dimension for a given node,
an update of the relevance vectors must follow every moving averages update. It is calculated by
an inverse logistic function of the bias-corrected estimated distances δ̂δδ ji, as follows in Equation
5.3.
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ω ji =


1

1 + exp

(
δ̂ jimean−δ̂ ji

s(δ̂ jimax−δ̂ jimin)

) if δ̂ jimin 6= δ̂ jimax

1 otherwise,

�
 �	5.3

where δ̂ jimax, δ̂ jimin and δ̂ jimean are respectively the maximum, the minimum and, the mean of
the components of the bias-corrected moving average vector δ̂δδ j, and the the parameter s > 0
controls the slope of the logistic function (Bassani & Araujo, 2015). This function is pretty
similar to Equation 3.12, however, instead of using δδδ j, the ALTSS-SOM replaces it by δ̂δδ j in
order to get a more accurate and unbiased moving average value.

5.5 LOCAL THRESHOLDS

The distance vectors δ̂δδ represent the corrected moving average of the observed distances
between the input patterns xxx and center vectors ccc for each node j in the map. As a result, they
can be considered as the variances of the nodes, as stated before.

In addition, the ωωω vectors express how each of the dimensions is important for each
node, which indicates the subspaces of the input dimensions of a given dataset. This information
corroborates with the definition of a local threshold, together with the estimated variance in the
form of the δ̂δδ vectors.

Combining them, it is possible to define a local region around each node center ccc j to act
like a reject option for some input patterns. If only the variances were used, some unimportant
dimensions with a low variance could misguide the process when a similar input pattern xxx is
outside the acceptance region of a node j, but only in dimensions that are not relevant to it.
Therefore, a flexible variance is defined to act as a local threshold and rejection option to mitigate
such problems:

Var(δ̂δδ j,ωωω j) =
δ̂δδ j

ωωω j

�
 �	5.4

When a dimension has a high relevance to the node, it will not impact its variance value.
However, when a dimension has a small relevance, ALTSS-SOM will relax the constraints to
allow a better definition of subspaces. Therefore, the general acceptance rule is defined by
Equation 5.5, where the idea is to approximate to an optimal rule.

A(xxx,ccc j,vvv j) =


True, xxxi ∈

]
ccc ji± vvv ji

[
,

∀ c ji ∈ ccc j, xxxi ∈ xxx, and vvv ji ∈ vvv j

False, otherwise,

�
 �	5.5

where xxx, ccc j are respectively the input pattern, and the center vector, and vvv j = Var(δ̂δδ j,ωωω j) is the
relaxed variance vector as per Equation 5.4.
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5.6 NODE UPDATE

As in LARFDSSOM, ALTSS-SOM updates the winner node and its neighbors using two
distinct learning rates, eb, and en, respectively. The relevances and weighted moving averages are
updated as shown in Section 5.4, and the centroid vector ccc j, given a learning rate lr, is updated
through Equation 3.10. The Algorithm 9 shows how the whole update occurs.

Algorithm 9: Node Update of of ALTSS-SOM
Input :Input pattern xxx, Node s, Learning Rate lr

1 Function UpdateNode(s, lr):
2 UpdateRelevances(xxx, s) (Algorithm 8);
3 Update the weight vector cccs (Equation 3.10);

5.7 UNSUPERVISED MODE

Given an unlabeled input pattern, the most activated node is considered as the winner,
disregarding its class labels. In this sense, ALTSS-SOM verifies if the condition expressed by
the Equation 5.5 is satisfied. If so, the winner and its neighbors are updated towards the input
pattern. Otherwise, a new node is inserted into the map at the input pattern position. However,
since s1 is the original winner, it will improve its knowledge about the region where it is located
by updating its moving averages and relevances, but not its center. This mechanism provides the
nodes the ability to learn about the region they are inserted in. An additional case is handled
when the map has reached the maximum number of nodes. In this case, aiming at not losing the
information that the input pattern can provide, as in previous models, and improving sample
efficiency, ALTSS-SOM updates the moving average and the relevance vectors of the winning
node. Algorithm 10 illustrates this procedure.

5.8 SUPERVISED MODE

Algorithm 11 shows how this supervised procedure is conducted. If the most activated
node s1 has the same class of the input pattern or a not defined class, a very similar approach to
the unsupervised mode is applied. The difference is directly related to the fact that is necessary
to set s1 class as the same class of the given input pattern xxx, as well as to update its connections.
Otherwise, the ALTSS-SOM tries to find a new winner with the same class of the input pattern xxx

or a not yet defined class.
If some new node takes the place of s1 as a new winner s2, the acceptance criteria

expressed by the Equation 5.5 is verified. If so, and the map is not full, the new winner and
its neighbors are updated. Otherwise, only the moving averages and relevance vector of s2 are
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Algorithm 10: Unsupervised Mode of ALTSS-SOM
Input :Input pattern xxx and the first winner s1;

1 if A(xxx, cccs1 , Var(δ̂δδ s1 , ωωωs1)) is True and N < Nmax
2 then . See Equation 5.5
3 Update the winner node and its neighbors: UpdateNode(s1, eb),

UpdateNode(neighbors(s1), en) (Algorithm 9);
4 Set winss1 ← winss1 + 1;

5 else if A(xxx, cccs1 , Var(δ̂δδ s1 , ωωωs1)) is False then . See Equation 5.5
6 Create a new node j and set: ccc j ← xxx, ωωω j ← 1, δδδ j ← 0, δ̂δδ j ← 0, t j ← 0, class j

← noClass and wins j ← l p×nwins;
7 Connect j to the other nodes as per Equation 4.1;
8 Update the relevances vector of s1: UpdateRelevances(xxx, s1) (Algorithm 8);

9 else
10 Update the relevances vector of s1: UpdateRelevances(xxx, s1) (Algorithm 8);

updated in order to give the same chance received by s1 to improve its knowledge about the
surrounding area.

If there are no new nodes to replace s1 as a new winner, and the map is not full, the s1

node is duplicated, preserving the moving averages vectors, the centroid vector as well as the
relevance vector. However, the class of this new duplicated node is set to the same as the input
pattern. The other parameters are set as usual. If none of the above conditions are fulfilled, the
ALTSS-SOM solely updates the moving averages and relevance vector of the first defined winner
s1.

5.9 NODE REMOVAL

In ALTSS-SOM, as in SS-SOM and LARFDSSOM, each node j stores a variable wins j

that accounts for the number of nodes victories since the last reset. Whenever nwins reaches the
age_wins value, a reset occurs. It implies to the moment when nodes that did not win at least the
minimum percentage of the competition l p×age_wins are removed from the map. After a reset,
the number of victories of the remaining nodes is reset to zero. Finally, to avoid the removal
of recently created nodes, when a new node is inserted, its number of wins is set to l p×nwins,
where nwins indicates the number of competitions that have occurred since the last reset.

5.10 NEIGHBORHOOD UPDATE

As in SS-SOM, the neighborhood ALTSS-SOM is formed by nodes with the same class
label or a not defined class label that presents a similar relevance in the input dimensions. It
means that two nodes are connected if they have similar classes and subspaces. Equation 4.1
considers these criteria for every pair of nodes.
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Algorithm 11: Supervised Mode of ALTSS-SOM
Input :Input pattern xxx and the first winner s1;

1 if classs1 = class(xxx) or classs1 = noClass then
2 if A(xxx, cccs1 , Var(δ̂δδ s1 , ωωωs1)) is False and N < Nmax
3 then . See Equation 5.5
4 Create new node j and set: ccc j ← xxx, ωωω j ← 1, δδδ j ← 0, δ̂δδ j ← 0, t j ← 0, class j

← class(xxx) and wins j ← l p×nwins;
5 Connect j to the other nodes as per Equation 4.1;
6 Update the relevances vector of s1: UpdateRelevances(xxx, s1) (Algorithm 8);

7 else if A(xxx, cccs1 , Var(δ̂δδ s1 , ωωωs1)) is True then . See Equation 5.5
8 Update the winner node and its neighbors: UpdateNode(s1, eb),

UpdateNode(neighbors(s1), en) (Algorithm 9);
9 Set classs1 ← class(xxx);

10 Update s1 connections as per Equation 3.13;
11 Set winss1 ← winss1 + 1;

12 else
13 Update the relevances vector of s1: UpdateRelevances(xxx, s1)

14 else
15 Try to find a new winner s2 as the next node with highest activation and noClass

or the same class of xxx;
16 if s2 exists then
17 if A(xxx, cccs2 , Var(δ̂δδ s2 , ωωωs2)) is True and N < Nmax
18 then . See Equation 5.5
19 Update the new winner node and its neighbors: UpdateNode(s2, eb) and

UpdateNode(neighbors(s2), en) (Algorithm 9);
20 else
21 Update the relevances vector of s2: UpdateRelevances(xxx, s2)

22 Set winss2 ← winss2 + 1;

23 else if N < Nmax then
24 Create new node j by duplicating s1 and set: ccc j ← cccs1 , ωωω j ← ωωωs1 , δδδ j ← δδδ s1 ,

δ̂δδ j ← δ̂δδ s1 , t j ← 0, class j ← class(xxx) and wins j ← l p×nwins;
25 Connect j to other nodes as per Equation 4.1;

26 else
27 Update the relevances vector of s1: UpdateRelevances(xxx, s1)

5.11 A SUMMARY OF THE PARAMETERS

ALTSS-SOM removes two parameters from its predecessor, SS-SOM. First, the parame-
ter at , that has a great impact on the results as shown by Bassani & Araujo (2015) and Section
4.8. It was replaced by the adaptive local threshold technique introduced by ALTSS-SOM
(Section 5.5) that can define and learn the space region that a node can represent during the
training. Second, the parameter ew was also removed due to its irrelevance in the learning process
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after removing at , i.e., ALTSS-SOM has nine parameters to be set up. It was concluded from
sensitivity analysis using scatter plots of the obtained metric results as function of the parameters
values, and linear fits to the data, as conducted in Section 4.9. More precisely, such analysis
revealed that there is no parameter with a high impact on the results anymore. This method seeks
to establish a good level of self-adjustment, in a way that we can keep the parameters values
fixed inside predefined ranges.

5.12 PRELIMINARY EXPERIMENTAL RESULTS AND CONCLUSIONS

This section presents the preliminary results of ALTSS-SOM in order to continue the
chronological order of the research. The further details of the experiments done with ALTSS-
SOM will be given in Chapter 6. For the current stage of reading, the preliminary experiments
compare the classification performance of ALTSS-SOM against SS-SOM with the same experi-
mental setup and methodology used in Section 4.9.

The results exhibited in Figure 10 illustrate the improvements that this adaptive lo-
cal threshold approach can provide. Its performance is superior to SS-SOM in all levels of
supervision.

(a) (b)

Figure 10: Best mean accuracy and standard deviation as function of the percentage of supervision
on (a) Pendigits and (b) Vowel datasets

As said in Section 5.11, the ALTSS-SOM has nine parameters, but none of them has a
high impact on the results anymore. In Figure 11, the l p was chosen to illustrate this behavior,
once it was a parameter of significant impact in previous versions. It is clear that the dependency
on the parameters is softened due to how ALTSS-SOM cope with the data information during the
training. All the other parameters have the same behavior, playing the same role in the model.



707070

(a) (b)

Figure 11: Preliminar sensitive analysis with a scatter plot of the Accuracy obtained with
ALTSS-SOM as a function of parameter l p on (a) Pendigits and (b) Vowel datasets

This chapter presented the ALTSS-SOM, an approach for classification and clustering
with SSL that introduces the concept of adaptive local thresholds to define the local receptive
field of the nodes. Next, in Chapter 6, all the experiments of an extensive evaluation with several
datasets will be shown in order to draw the conclusions and future work of this dissertation.
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6
MODELS VALIDATION

6.1 METRICS

The accuracy metric was used to evaluate the proposed models with respect to the others
regarding classification rate. It is the ratio of the number of correct predictions to the total number
of input samples. On the other hand, for the experiments involving the clustering task solely, the
CE metric takes place. It was previously defined in Section 2.6.1.

6.2 DATASETS

All, the datasets used in the experiments were specified in Section 2.6.2. First, the
performance of the proposed models was evaluated in the seven real-world datasets provided by
the OpenSubspace framework (Müller et al., 2009). However, the framework does not include
information about their relevant dimensions. Therefore, all of the dimensions were considered as
relevant when calculating the CE metric in the clustering experiments. The datasets were also
used to evaluate the model on considering the accuracy metric.

Second, in order to extend the application range of the proposed models by evaluating
their capabilities of classifying and clustering images, traditional image benchmark datasets,
such as CIFAR10, MNIST, FashionMNIST, and SVHN were used. However, to make it feasible,
it was necessary to perform a feature extraction step followed by a transfer learning technique.
It was done using a pre-trained network on ImageNet (Deng et al., 2009), and then evaluating
SS-SOM similarly to the experiments conducted in Medeiros et al. (2018). Those results can
provide a better understanding of their capabilities. Moreover, Batch SS-SOM was studied using
a different approach to extract features.

6.3 PARAMETERS TUNING

Usually, subspace clustering methods have several parameters and adjusting them is not
an easy task. So, aiming to address this issue, each method was run 500 times with different
parameter values sampled within a previously established interval, according to a LHS (McKay
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et al., 1979; Helton et al., 2005), which was described in Section 2.6.3. Moreover, to define the
best ranges to be used, sensitive analysis techniques were used, as in Iman & Helton (1988) and
Saltelli et al. (2000). They both show that given the probabilistic basis of LHS, it can provide
direct estimates for the Cumulative Distribution Function (cdf) and variance of models. It is
done by pairing the obtained results measure and the parameter values sampled from the LHS
distribution used to obtain each of the results. Also, it is possible to use this in combination with
a linear regression model to get intuitions about the trends of the obtained results as a function of
the parameter value used (Iman & Helton, 1988; Saltelli et al., 2000). Such an analysis can be
done for each parameter in order to draw a better understanding of their impact and influence on
the models.

It is important mentioning that SOM-based methods are stochastic and/or depend on
initial conditions. Despite they may not achieve their best results in a single run, for all of the
experiments performed with real-world datasets (Table 1), the methods were executed only once
for each parameter setting in order to keep the same number of experiments. The parameter
ranges for the proposed and comparable methods will be given the next sections. Precisely for
the proposed methods, the ranges used are suitable for datasets scaled in the [0, 1] interval. For
the other methods used in CE comparison, the parameter ranges were the same as those used in
Bassani & Araujo (2015).

6.4 STATISTICAL TESTS

In the following Sections and Chapters, there are mentions to statistical differences
between models. When this occurs, the statistical test used was the Wilcoxon test (Wilcoxon,
1945).

The Wilcoxon test is a non-parametric statistical test used to compare two related samples
or measurements. It can be seen as an alternative to the t-test when the population cannot be
assumed to be normally distributed. As this was not trivial to determine, the Wilcoxon was
chosen with a level of significance of 5%. Another reason for the choice of the Wilcoxon test is
the dependency of the measurement samples, once they are originated from the same datasets for
each further evaluated model, showing then a condition of relation.

6.5 EXPERIMENTAL SETUP

In order to evaluate the performance of the proposed models in different contexts and
applications, the experiments were organized as follows:

1. Section 6.6 evaluates the performance of SS-SOM in conditions of different percent-
ages of labeled data.
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2. Section 6.7 illustrates the sensitivity of SS-SOM to its parameters and how it can
impact the results.

3. Section 6.8 demonstrates an extended capability of SS-SOM by applying the model
to perform classification tasks using traditional image classification datasets and
transfer learning techniques.

4. Section 6.9 analyzes a case study concerning the performance and behavior of the
proposed Batch SS-SOM on traditional image classification datasets.

5. Section 6.10 pictures the performance of ALTSS-SOM in the same conditions as
those of Section 6.6.

6. Section 6.11 discusses the results obtained by ALTSS-SOM for clustering tasks
solely, without using any labels in comparison with other clustering methods.

7. Section 6.12 provides the sensitivity analysis of ALTSS-SOM in order to draw some
conclusions about the improvements made since the first proposed version.

8. Section 6.13 shows the outcomes obtained from both SS-SOM and ALTSS-SOM in
a completely supervised scenario.

All of the aforementioned experiments will give the conditions to draw the proper
conclusions about the conducted research.

6.6 SS-SOM: CLASSIFICATION ACCURACY WITH DIFFERENT PER-

CENTAGES OF LABELED DATA

In order to evaluate the classification capabilities of SS-SOM, it is compared with the
following semi-supervised methods: Label Propagation (Xiaojin & Zoubin, 2002) and Label
Spreading (Zhou et al., 2004). They were described in Section 2.5, and chosen due to their
popularity and connection to several other important algorithms, such as Markov random walks
(Szummer & Jaakkola, 2002) and mean field approximation (Peterson, 1987; Jordan et al., 1999).
In this sense, for studying the effects of the different levels of supervision, i. e., the percentage of
labeled data, all of them were trained, using the seven real-world datasets from the OpenSubspace
framework (Müller et al., 2009), with the following percentages: 1%, 5%, 10%, 25%, 50%, 75%
and 100%. Also, the maximum number of nodes for SS-SOM (Nmax) was set to be the size of
the training set, because, in the worst case, it is expected that the model creates one cluster for
each training sample.

So, for all of the algorithms, on each dataset, a 3-times 3-fold cross-validation was used.
Each method was trained and tested 500 times for each fold with different parameter values
sampled from the parameter ranges presented in Table 3 and Table 4, according to a LHS (Helton
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et al., 2005), while the best accuracy achieved by each method in each fold was recorded for
each dataset. It comprises a total of 752,000 experiments. After that, the mean and the standard
deviation of the best results for each dataset were calculated separately. A projected clustering
problem was considered, where each sample should be assigned to a single cluster, and SS-SOM
was set to operate in such mode. For classification purposes, if available, we use the node class
as the predicted class. Otherwise, it is straightforwardly considered as an error. The next section
presents the obtained results and their analysis.

Table 3: Parameter Ranges for SS-SOM

Parameters min max
Activation threshold (at) 0.80 0.999

Lowest cluster percentage (lp) 0.001 0.01

Relevance rate (β ) 0.001 0.5

Max competitions (age_wins) 1×S∗ 100×S∗

Winner learning rate (eb) 0.001 0.2

Wrong winner learning rate (ew) 0.01× eb 1× eb

Neighbors learning rate (en) 0.002× eb 1× eb

Relevance smoothness (s) 0.01 0.1

Connection threshold (minwd) 0 0.5

Number of epochs (epochs) 1 100

* S is the number of input patterns in the dataset.

Table 4: Parameter Ranges for Label Spreading and
Label Propagation

Parameters min max

Kernel Function1 1 2

γ (for RBF Kernel) 10 30

Number of Neighbors (for KNN Kernel) 1 100

α∗ 0 1

Number of epochs 20 100
11: RBF and 2: KNN. * α is only used for label spreading.

Figure 12 shows the obtained results as a function of the percentage of labeled data. In
all datasets, the performance of the SS-SOM is superior to the other semi-supervised methods
concerning the supervision rate between 1% up to 75%, whereas with the highest percentage
(100%) the difference is smaller, but it still outperforms them or obtain comparable results. These
results show the robustness of SS-SOM in situations when only a small number of labeled data
is available.
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(a) Breast (b) Diabetes

(c) Glass (d) Liver

(e) Shape (f) Pendigits

(g) Vowel

Figure 12: Best mean accuracy and standard deviation as function of the percentage of supervision
on (a) Breast, (b) Diabetes, (c) Glass, (d) Liver, (e) Shape, (f) Pendigits, and (g) Vowel datasets
for SS-SOM, Label Spreading and Label Propagation.
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6.7 SS-SOM: SENSITIVITY ANALYSIS

Bassani & Araujo (2015) showed examples of scatter plots produced when conducting the
sensitivity analysis of LARFDSSOM clustering the seven real-world datasets from OpenSubspace
framework. The scatter plots indicated that the parameter at is primarily responsible for the
variation observed in the results, followed by lp. To get a deeper understanding about such
analysis, we replicated the sensitivity analysis for SS-SOM. Note that SS-SOM works exactly
as LARFDSSOM when there are no labels available. So that, it is expected from SS-SOM to
reproduce the same behavior of LARFDSSOM in such analysis.

The charts displayed in Figure 13 were obtained from SS-SOM. It is clear, as for Bassani
& Araujo (2015), that at plays a role of significant impact on the results.

To highlight this behavior, the parameter at was isolated for a thorough analysis with
seven datasets. The results can be seen in Figure 14. For instance, in Figure 14f, a slight change
in at , e.g., from 0.96 to 0.98, results in a drastic fall of Accuracy. It is reasonable to repeat such
analysis taking into consideration the experiments with 50% of labeled data, since this will allow
us assess the average results of both supervised and unsupervised learning procedures, once 50%
is a halfway between both usages at training time.

The effect of lp is much less significant then the impact of at . Therefore, it can be better
observed with at assuming a fixed value. In this regard, the behavior remained the same as for
LARFDSSOM (Bassani & Araujo, 2015). With such analysis at hand, it is clear the necessity to
build a methods less sensitive to the change of parameters values.

6.8 SS-SOM: IMAGE CLASSIFICATION PERFORMANCE

SS-SOM was put to the test for image classification benchmarks trying to demonstrate an
extended capability and application range. More precisely, a pre-trained DenseNet-161 (Huang
et al., 2017) network on ImageNet (Deng et al., 2009) was used to perform a transfer learning,
extracting the features of each dataset shown in Table 2 to feed the SS-SOM. DenseNet was
chosen due to its performance results for object recognition tasks on CIFAR10, CIFAR100,
SVHN and ImageNet. DenseNets are currently the state-of-the-art on most of them (Huang et al.,
2017). Figure 15 shows their architecture. Moreover, the suffix "161" denotes the configuration
of the convolutional layers in each Dense block, that can be seen in Figure 15.

Additionally, the image resolution on ImageNet normally varies depending on the
application, but on average it is 469x387 pixels, and normally a pre-processing step is applied
to rescales them to 256x256. However, the experiments conducted in this work considered a
resolution of 224x224 to fit the input size of the DenseNet-161.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 13: Sensitivity analysis with a scatter plot of the Accuracy obtained with SS-SOM as
a function of its parameters, (a) at , (b) lp, (c) dsbeta, (d) eb, (e) en, (f) ew, (g) epsilon_ds, (h)
minwd, (i) age_wins, and (j) epochs, for Pendigits real-world dataset using 50% of the available
labels, and 1 fold randomly chosen from the 3-times 3-fold cross validation scheme. The red lines
are the linear fits to the data, which is a common and effective way of studying the sensitivity of
parameters, as Iman & Helton (1988) demonstrates.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 14: Sensitivity analysis with a scatter plot of the Accuracy obtained with SS-SOM as a
function of parameter at on (a) Breast, (b) Diabetes, (c) Glass, (d) Liver, (e) Shape, (f) Pendigits,
and (g) Vowel real-world datasets using 50% of the available labels. The red lines are the linear
fits to the data.

Figure 15: DenseNet architecture (Huang et al., 2017)

Particularly, the performance on the features extracted from CIFAR10 dataset with
DenseNet-161 (Huang et al., 2017) pre-trained model using the PyTorch framework (Paszke
et al., 2017) was measured. A sampling of 4000 balanced labeled data from the CIFAR10 was
made to avoid oversampling or undersampling of any class when trying to evaluate the result
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using a low amount of labeled data. After that, the SS-SOM was trained using the same ranges
as those defined in Table 3. However, only ten parameters set were sampled, and the one that
presented the best results on average was chosen to perform the experiments and compare further
with other models, not only with 4000 balanced labeled data but also with all labels.

In this context, the SS-SOM is compared with with S3C (Hui, 2013) and VIK (Good-
fellow et al., 2012). The S3C is an effective feature discovery algorithm for both supervised
and semi-supervised learning with small amounts of labeled data based on inferences. The VIK
is a modified simple K-means dictionary learning. It extends the concept of spatial pooling by
drawing a strategy of directly modeling complex invariances of object features. Also, despite
being remarkable in the literature, they both have an experimental methodology in which it was
possible to compare without the need for implementation and rerunning. They just tune the
model to its parameters, and after finding the best configuration, the model is run only once.

Table 5 shows the obtained results. The SS-SOM presented the best results. It is worth
mentioning that because of computational costs, it was not possible to reproduce more recent
techniques of the area, such as Wide ResNet (WRN-28-2) (Oliver et al., 2018), that claims to
be the state-of-the-art for SSL. Despite the fact they are harder to beat, this set of experiments
clarified that SS-SOM can perform well for such complex problems.

Table 5: Classification rate obtained by SS-SOM, S3C and VIK using 4000 and all labeled data.

Accuracy 4000 All
SS-SOM 0.72 0.85

Spike-and-Slab Sparse Coding 0.68 -

View-Invariant K-means 0.71 0.82

6.9 BATCH SS-SOM: A CASE STUDY

This case study aims at analyzing if the proposed Batch SS-SOM also performs well in
image classification benchmark datasets, since SS-SOM presented good results concerning the
classification rate for CIFAR10 allied with feature extraction and a transfer learning technique.
The following strategy was developed to do so. First, since MNIST and Fashion-MNIST are
composed of grayscale images, a new Convolutional Neural Network (CNN) model (Goodfellow
et al., 2016) was intended to be trained from scratch, for feature extraction. Specifically, the
features before the classification layer were used as the input for Batch SS-SOM. Second, several
supervision rates, i.e., the percentage of labeled data, were defined, as in Section 6.6, for studying
the effects of such variability of available labels in the outcome results on three image datasets:
MNIST, Fashion-MNIST, and SVHN. It is worth mentioning that the sampling was not balanced.

Different architectures were used in order to achieve better results for each dataset in
particular. Figure 16, Figure 17, and Figure 18 show the pipeline used to extract the features of
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SVHN, MNIST, and FashionMNIST, respectively. For MNIST and FashionMNIST, the extracted
features fed Batch SS-SOM model with 32 input dimensions, whereas for SVHN, it was 84 input
dimensions. The chosen numbers of dimensions were arbitrarily defined at first hand. However,
the obtained results were satisfactory for the sake of discussion, since they were close to other
benchmark results as Liang & Hu (2015), Netzer et al. (2011), and Xiao et al. (2017). Therefore,
it is necessary to carry out more detailed experiments to figure out and understand the behavior
that such numbers of dimensions have in the performance of Batch SS-SOM. Finally, some
recent well-established techniques such as Batch Normalization (Ioffe & Szegedy, 2015) and
Dropout (Srivastava et al., 2014) were used while building the architectures. Moreover, the most
currently used activation function, Rectified Linear Units (ReLU) (Nair & Hinton, 2010), was
also employed.

(a) Custom SVHN CNN Model.

(b) Batch SS-SOM with features extract from layer before
classifier.

Figure 16: SVHN Training Pipeline

(a) Custom layer used on MNIST CNN Model.

(b) MNIST CNN Model.

(c) Batch SS-SOM with features extract from layer before
classifier.

Figure 17: MNIST Training Pipeline

The results presented in Figure 19 show that the Batch SS-SOM performs well even
with few labels and still improves as the number of labeled samples grows. Note, however,
that such gains are not so significant, especially after a certain point that can be defined around
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(a) Custom layer used on FashionMNIST CNN Model.

(b) FashionMNIST CNN Model.

(c) Batch SS-SOM with features extract from layer before
classifier.

Figure 18: FashionMNIST Training Pipeline

5% of labeled data, where the performance stabilizes. This behavior was observed in all
datasets, showing that the Batch SS-SOM is a good approach for training in image classification
benchmarks. Notice that it is a challenge for a great variety of models. Such performance
obtained by the Batch SS-SOM defines a promising path through the use and application
of SOM-based methods for more complex and new challenges imposed by the advances of
technology. The ranges for Batch SS-SOM were defined as the same as those used in Table 3 for
the original SS-SOM.

Figure 19: The Accuracy results obtained with Batch SS-SOM for FashionMNIST, SVHN and
MNIST dataset as function of the percentage of labeled data. The red lines indicate the results
that were targeted for MNIST, SVHN and FashionMNIST, respectively, from top to bottom
(Liang & Hu, 2015; Netzer et al., 2011; Xiao et al., 2017).
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6.10 ALTSS-SOM: CLASSIFICATION ACCURACY WITH DIFFERENT

PERCENTAGESOF LABELED DATA

In order to evaluate the classification rate of ALTSS-SOM, the experiments conducted in
Section 6.6 were replicated, adding the ALTSS-SOM in the comparison. The ranges used for
ALTSS-SOM are defined in Table 6, whereas the ranges of the other methods were the same
as those used in Section 6.6. The maximum number of nodes for ALTSS-SOM was set to be
Nmax = 200.

Table 6: Parameter Ranges for ALTSS-SOM

Parameters min max
Lowest cluster percentage (lp) 0.001 0.002

Relevance rate (β ) 0.90 0.95

Max competitions (age_wins) 1×S∗ 100×S∗

Winner learning rate (eb) 0.001 0.2

Neighbors learning rate (en) 0.002× eb 1× eb

Relevance smoothness (s) 0.01 0.2

Connection threshold (minwd) 0 0.5

Number of epochs (epochs) 1 100

* S is the number of input patterns in the dataset.

Figure 20 shows the results of ALTSS-SOM in comparison with SS-SOM, Label Propa-
gation and Label Spreading in the real-world datasets. The results are shown as a function of
the percentage of labels that were used. Overall, ALTSS-SOM improved the performance of
SS-SOM, except for the Diabetes dataset (Figure 20b) where the results obtained were slightly
lower, but yet comparable. The flexibility provided by the estimation of the receptive field of
nodes, and the improved sample efficiency allowed such results. Still, the standard deviation for
all datasets in all supervision levels was also minimized, which indicates another positive aspect
of the ALTSS-SOM: it is more robust to variations on both datasets and parameters. While the
other semi-supervised learning methods surpassed SS-SOM in Pendigits and Vowel datasets,
ALTSS-SOM achieved a consistent improvement by outperforming the results of both LP and
LS, in all datasets, except for Vowel at 100%.
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(a) Breast (b) Diabetes

(c) Glass (d) Liver

(e) Shape (f) Pendigits

(g) Vowel

Figure 20: Best mean accuracy and standard deviation as function of the percentage of supervision
on (a) Breast, (b) Diabetes, (c) Glass, (d) Liver, (e) Shape, (f) Pendigits, and (g) Vowel datasets
for ALTSS-SOM, SS-SOM, Label Spreading and Label Propagation
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6.11 ALTSS-SOM: CLUSTERING PERFORMANCE

Aiming to assess the performance of ALTSS-SOM in a purely unsupervised clustering
task due to the changes made in the original framework that it was inspired, it was compared
with Densitive-based Optimal projective Clustering (DOC), PROjected CLUStering algorithm
(PROCLUS) and LARFDSSOM/SS-SOM. We refer the LARFDSSOM and SS-SOM together
due to their equivalence for clustering tasks solely, as mentioned in Chapter 4. The first two
methods are originally from the data mining area. This choice of comparison was defined in
accordance to the analysis provided by Bassani & Araujo (2015), where LARFDSSOM presented
the best results overall, and DOC and PROCLUS appeared as the two best options on average
concerning subspace approaches in a distinction of data mining applications. The parameters
used for ALTSS-SOM to execute such clustering tasks are slightly different from the previous
classification tasks. They are pointed in Table 7, whereas the ranges of the other methods were
the same as those used in Bassani & Araujo (2015).

Table 7: Parameter Ranges for ALTSS-SOM on Clustering
Tasks

Parameters min max
Lowest cluster percentage (lp) 0.001 0.01

Relevance rate (β ) 0.001 0.5

Max competitions (age_wins) 1×S∗ 100×S∗

Winner learning rate (eb) 0.001 0.2

Neighbors learning rate (en) 0.002× eb 1× eb

Relevance smoothness (s) 0.01 0.1

Connection threshold (minwd) 0 0.5

Number of epochs (epochs) 1 100

* S is the number of input patterns in the dataset.

For a better understanding of the comparison, DOC (Procopiuc et al., 2002) is a cell-based
method that searches for sets of grid cells containing more than a certain number of objects by
using a Monte Carlo based approach that computes, with high probability, a good approximation
of an optimal projective cluster. PROCLUS (Aggarwal et al., 1999) is a clustering-oriented
algorithm that aims to find clusters in small projected subspaces. It is done by optimizing
an objective function of the entire set of clusters, such as the number of clusters, average
dimensionality, or other statistical properties.

Table 8 shows the results of the CE obtained with the methods. It shows that no method
achieved the best result for all real-world datasets. ALTSS-SOM presented the best result for
6 of the seven datasets, though it achieved the same results of LARFDSSOM for Breast and
Glass datasets. Also, ALTSS-SOM was the second best for Diabetes, what shows a similar
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behavior when compared with the results obtained in the Section 6.10 which took into account
the classification rate. On considering a general comparison, ALTSS-SOM present the best
results on average. It is worth mentioning the similarity between the results of ALTSS-SOM
and LARFDSSOM can be attributed to the fact that there were no labeled noise samples in
the datasets, to the unknown information about the irrelevant dimensions, and to the intrinsic
characteristics inherited by ALTSS-SOM from the LARFDSSOM. Also, once DOC does not
have a direct way to control the number of clusters, it presented difficulties to find out the correct
value.

Moreover, PROCLUS presented good results when the parameter controlling the number
of clusters was defined close to the correct value. The good results obtained by LARFDSSOM
is directly related to a good choice of the parameters at and lp, which significantly impact the
results. ALTSS-SOM achieves good results without the needing of very precise definition of the
parameter values, what is more deeply evaluated in the next section.

Table 8: CE Results for Real-World Datasets

CE Breast Diabetes Glass Liver Pendigits Shape Vowel Avg STD

DOC 0.763 (1) 0.654 0.439 0.580 0.566 0.419 0.142 0.509 0.201

PROCLUS 0.702 (2) 0.647 (2) 0.528 (2) 0.565 0.615 0.706 0.253 0.574 0.156

LARFDSSOM/SS-SOM 0.763 (1) 0.727 (1) 0.575 (1) 0.580 (2) 0.737 (2) 0.719 (2) 0.317 (2) 0.631 0.158

ALTSS-SOM 0.763 (1) 0.697 (2) 0.575 (1) 0.603 (1) 0.741 (1) 0.738 (1) 0.319 (1) 0.633 0.156

6.12 ALTSS-SOM: SENSITIVITY ANALYSIS

In previous methods, the most two critical parameters were the at and lp, while at played
a role of great importance due to its high impact on the results with just a small change on its
values, i.e., at impacted the results exponentially. Because of that, a sensitivity analysis was also
performed for ALTSS-SOM in order to elucidate the improvements over the previous versions.
Figure 21 shows the results. Notice that there are no significant trends to parameter values, and
they do not damage the performance with slight changes in its values. This same behavior was
observed for all the other datasets used in this set of experiments.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 21: Sensitivity analysis with a scatter plot of the Accuracy obtained with ALTSS-SOM
as a function of its parameters, (a) lp, (b) dsbeta, (c) eb, (d) en, (e) epsilon_ds, (f) minwd, (g)
age_wins, and (h) epochs, for Pendigits real-world dataset using 50% of the available labels, and
1 fold randomly chosen from the 3-times 3-fold cross validation scheme. The red lines are the
linear fits to the data.

Despite of that, the parameters l p and eb were chosen due to its semantical importance to
carry out a more detailed analysis aiming at showing that with ALTSS-SOM the same range of
parameters work well for a variety of datasets and that such range does not exist for the previous
methods (LARFDSSOM and SS-SOM). Figure 22 shows the scatter plots of ALTSS-SOM
accuracy as a function of the parameter lp for the datasets trained with 50% of labels to illustrate
a scenario where both forms of learning impact the outcome. Note that for all datasets, lp did not
show a significant impact on the results. It is also worth mentioning that the plots in Figure 22 are
the combination of each parameter value for each cross-validation set. Here in ALTSS-SOM, the
lp is the most important parameter because it defines more clearly the behavior of the algorithm,
however, the results show that its impact is not very significant inside the specified ranges (i.e.



878787

below 0.002).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 22: Scatter plots of the Accuracy obtained with ALTSS-SOM as a function of its parameter
lp on (a) Breast, (b) Diabetes, (c) Glass, (d) Liver, (e) Shape, (f) Pendigits, and (g) Vowel datasets
trained with 50% of labels. The red lines are the linear fits to the data.

Figure 23 shows the scatter plots of the parameter eb. This time we chose the datasets
Breast, Vowel and Pendigits to illustrate the impact of parameters. We first started with a wide
range from 0.001 to 0.4 (Figure 23a to Figure 23c), however, the linear fit was mostly horizontal,
not indicating a trend, again. We then shrank the range to 0.001 to 0.2 and reran the experiments.
The results were as expected, keeping stable as shown by Figure 23d to Figure 23f. These
experiments clarify how the model is robust to parameter changes. The parameters lp and eb

were taken for study due to their semantic importance, since other parameters presented similar
behavior, with none of them acting a role as at and lp in the before-mentioned versions.
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(a) (b) (c)

(d) (e) (f)

Figure 23: Scatter plots of the Accuracy obtained with ALTSS-SOM as a function of its parameter
eb on (a) Breast, (b) Diabetes, (c) Glass, (d) Liver, (e) Shape, (f) Pendigits, and (g) Vowel datasets
trained with 50% of labels to illustrate how the parameter ranges were defined. The red lines are
the linear fits to the data.

6.13 SS-SOM AND ALTSS-SOM: FULLY SUPERVISED PERFORMANCES

To draw a better understanding of the behavior of both SS-SOM and ALTSS-SOM, they
were valuated in the scenario of a regular supervision learning task. It is not expected that they
go well due to the fact that they were not built for such a scenario.

Still, their capabilities are pushed in order to do a comparison with traditional supervised
methods such as Multilayer Perceptron (MLP) (Haykin, 2009), Support Vector Machine (SVM)
(Cortes & Vapnik, 1995), and Generalized Relevance Learning Vector Quantization (Hammer
& Villmann, 2002). The ranges used for those methods are given from Table 9 to Table 11.
SS-SOM, ALTSS-SOM, LP, and LS were ran with the ranges defined in Table 3, Table 6, and
Table 4 from the previous sections.
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Table 9: Parameter Ranges for MLP

Parameters min max

Number of neurons in each layer 1 100

Number of hidden layers 1 3

Learning rate 0.001 0.1

Momentum 0.85 0.95

Epochs 100 200

Optimizer1 1 3

Activation function2 1 3

Learning Decay3 1 3

11: lbfgs; 2: sgd; 3: adam; 21: logistic; 2: tanh; 3: relu;
31: constant; 2: invscaling; 3: adaptative.

Table 10: Parameter Ranges for GRLVQ

Parameters min max

Number of nodes 10 30

Positive learning rate 0.4 0.5

Negative learning rate 0.01 0.05

Weights learning rate 0.15 0.2

Learning Decay 0.000001 0.00002

Number of epochs 5000 10000

Table 11: Parameter Ranges for SVM

Parameters min max

C 0.1 10

Kernel Function1 1 4

Degree of polynomial kernel function 3 5

Gamma of kernel functions 2, 3 and 4 0.1 1

Independent term in kernel functions 2 and 3 0.01 1
11: linear, 2: poly, 3: rbf and 4: sigmoid.

Table 12 shows the results of SS-SOM, ALTSS-SOM and other semi-supervised methods
using 100% of the labeled data, allowing a comparison with supervised methods such as GRLVQ,
MLP, and SVM. Notice that when there are more than one global best for a particular dataset, it
means that the results have no statistical differences.
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Table 12: Accuracy Results for Real-World Datasets with 100% of the labeled data

Accuracy Breast Diabetes Glass Liver Pendigits Shape Vowel Avg

SS-SOM 0.816 (0.036) 0.776 (0.012) 0.723 (0.053) 0.740 (0.020) 0.975 (0.004) 0.915 (0.023) 0.834 (0.017) 0.826

ALTSS-SOM 0.828 (0.034) 0.745 (0.014) 0.748 (0.029) 0.735 (0.029) 0.990 (0.002) 0.934 (0.038) 0.900 (0.017) 0.840
LP 0.806 (0.041) 0.762 (0.022) 0.696 (0.049) 0.697 (0.053) 0.994 (0.001) 0.915 (0.050) 0.945 (0.017) 0.831

LS 0.811 (0.044) 0.763 (0.025) 0.695 (0.045) 0.689 (0.054) 0.994 (0.001) 0.915 (0.050) 0.945 (0.017) 0.830

MLP 0.848 (0.031) 0.794 (0.017) 0.741 (0.023) 0.767 (0.034) 0.993 (0.002) 0.934 (0.037) 0.883 (0.026) 0.851
SVM 0.832 (0.029) 0.787 (0.021) 0.721 (0.048) 0.746 (0.035) 0.997 (0.001) 0.932 (0.046) 0.904 (0.015) 0.846

GRLVQ 0.830 (0.029) 0.769 (0.026) 0.682 (0.035) 0.694 (0.034) 0.915 (0.006) 0.825 (0.044) 0.514 (0.024) 0.747

In bold, the best results for each dataset on each category: semi-supervised and supervised methods. The
underlined results indicate the global best (more than one global best means that there is no statistical difference

between the underlined results).

The proposed models show a comparable performance with the other semi-supervised
methods, where the most significant difference is for Vowel. Also, SS-SOM appears as the best
overall among the semi-supervised methods (the first four in the table), for the Diabetes and
Liver datasets. Still, concerning only semi-supervised models, ALTSS-SOM presented the best
results for Breast, Glass and Shape, while Label Propagation and Label Spreading are the best
for Pendigits and Vowel. Among the supervised models (the last three in the table), MLP is
undoubtedly the best.

On considering all methods at 100% of supervision, the MLP is the best on average in
three of seven datasets. However, in two of them (Diabetes and Liver), there are no statistical
differences between SS-SOM and MLP, as well as between ALTSS-SOM and MLP for the
Breast datasets. The ALTSS-SOM is the best on average for Glass. However, there is still no
difference for the second best, the MLP. Moreover, ALTSS-SOM and MLP are tied on average
for the Shape dataset. Moreover, LP and LS are the best ones for Vowel, and in the end, there is
no difference at all between the obtained results by all models on Pendigits, except the GRLVQ.

The two proposed methods showed results better than or at least close to the best found
in comparison with others supervised and semi-supervised methods, even with it not being the
primary objective of this work.

6.14 SUMMARIZING THE CONDUCTED EXPERIMENTS

By the understanding that the experiments may have become too dense and that the
reader may have lost the tracking about the obtained results, a summary was built in Table 13 to
show the big picture of what was accomplished.
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Table 13: Experimental Summary

Experiment Result
SS-SOM Semi-Supervised Capabili-
ties (Section 6.6)

Showed to be the best on average in comparison with
traditional approaches.

SS-SOM Sensitivity Analysis (Sec-
tion 6.7)

Demonstrated a high dependency and sensibility to
the parameter at .

SS-SOM with Transfer Learning
(Section 6.8)

Surprisingly good results were obtained. It opens a
new promising path of SOM-based models applica-
tions.

Batch SS-SOM Results (Section 6.9) It showed to be good, however, needs to be better
explored and enhanced with newer techniques from
the Deep Learning area.

ALTSS-SOM Semi-Supervised Ca-
pabilities (Section 6.10)

It improved the results of SS-SOM. Its robustness was
shown to have led to significant gains regarding the
previous model.

ALTSS-SOM Clustering Quality
(Section 6.11)

The changes made in the framework provided the
chance for the ALTSS-SOM to improve or at least
maintain the clustering quality in comparison with
other benchmarks.

ALTSS-SOM Sensitivity Analysis
(Section 6.12)

ALTSS-SOM reduced the dependency and sensibility
to the parameters drastically. It showed to became
steady even though with significant changes in the
parameters values.

SS-SOM and ALTSS-SOM Fully Su-
pervised (Section 6.13)

Both methods presented good results, including being
better in some cases, despite the fact they were not
built for that.
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7
FINAL CONSIDERATIONS

In this chapter the final analysis of the proposed models, the main contributions to the
science, the published papers, the limitations found in the models, and finally, future works and
possible applications are presented.

7.1 ANALYSIS OF THE PROPOSED MODELS

Chapter 1 and Chapter 2 introduced several problems and challenges that are emerging
as technology advances. More precisely, the lack of labels in the midst of the great volume
of information that has been produced every day is still a problem for a significant number of
machine learning models. This Dissertation was intended to take another step attaining to build
more sophisticated solutions for such a problem by trying to accomplish the objectives pointed
in Chapter 1.

The main objective was to develop Semi-Supervised models based on the concepts
of both SOM and LVQ to improve the results obtained with traditional SSL methods in the
literature. It was achieved by proposing and validating SS-SOM and ALTSS-SOM. They both
carry elements of supervision inspired by LVQ that were introduced to a SOM-based framework.
The behavior of SS-SOM was shown to have led to significant improvements in classification
results for small amounts of labeled data, establishing its position as a good option when dealing
with such problems. It showed its robustness under this condition, being better than other
semi-supervised models, achieving impressive results even with only 1% of labeled data, in
comparison with other SSL methdos. ALTSS-SOM was the second approach for semi-supervised
self-organizing maps applied to cluster and classification tasks. The behavior of ALTSS-SOM
showed advances in comparison with SS-SOM. It consolidates a position of a good choice in
situations where only a small portion of labels are available. The experiments conducted in
Section 6.6 and Section 6.10 endorse such conclusion.

The specific objectives concern four distinct points. The first was related to extending
the application range of the proposed models. To do so, the SS-SOM was tested with extracted
features by performing a transfer learning, that allowed a SSL prototype-based method such
as SS-SOM, that is not suitable for working with data as complex as raw images or audio, to
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perform well and extend its application range, even in such conditions that it was not built to deal
with, as can be seen in Section 6.8. It is also worth mentioning that because of computational
costs, we were not able to reproduce more recent techniques that are harder to beat. Furthermore,
Batch SS-SOM, a novel approach that allows a mini-batch training procedure for the traditional
shallow architecture of a SOM, was proposed. The results were surprisingly good. It is true that a
great range of techniques that may benefit the performance of Batch SS-SOM exist. However, the
first version established a good baseline for future development and the experiments conducted
in Section 6.9 defines it as a promising path to follow.

The second one intended to improve not only the classification rate of the models but
also the clustering quality when there is no label available. It was fulfilled with ALTSS-SOM,
that showed improved results not only regarding classification rate but also in clustering aspects.

The third relies on the development of a strategy able to estimate local rejection options
as a function of both local variance and the relevance of input dimensions to make pattern
rejection decisions. It is the central point behind the ideas of ALTSS-SOM, that was explained
in Chapter 5.

The last aimed at reducing the dependency and the variability of models to some parame-
ters. Such behavior was reached with ALTSS-SOM, as demonstrated in Section 6.7 and Section
6.12. This parametric robustness can be considered as one of the most important contributions of
this current work.

Moreover, it is important mentioning some additional considerations. Both SS-SOM
and ALTSS-SOM were put on trial in a scenario of full supervision by comparing their results
with state-of-the-art methods developed specifically for supervised learning. Even though not
being built for that, both models presented good results, being better than or at least close to the
best methods. Additionally, ALTSS-SOM was able to reduce in two the number of parameters
whereby improving the performance in both contexts of classification and clustering metrics.

Finally, the usage of a relaxed estimated variance allowed the method to explore the
local information of the data clusters better. Also, the modifications proposed in ALTSS-SOM
provided the ability to improve its sample efficiency by not merely discarding data in certain
cases but kept digging into its characteristics in order to establish a better understanding of
their statistics. This can be summarized in the idea of developing models that can exploit to the
utmost the information carried in the data, either for generating prototypes or for adjusting their
receptive fields, but also being able to recognize and disregard outliers when necessary,

7.2 CONTRIBUTIONS TO SCIENCE

The research carried out in the development of this Dissertation resulted in a set of
contributions to the correlated areas in the science:

The SS-SOM and ALTSS-SOM models were shown to be promising for classification
tasks even when only a few amounts of data is available. Also, they both can switch between
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different forms of learning, being able to perform semi-supervised classification and clustering,
but also each of these tasks in an isolated form when submitted to such conditions.

In particular, the results obtained with SS-SOM not only showed its capabilities for
traditional classification tasks but also to more complex applications with the use of transfer
learning techniques in more challenging data. Moreover, its extension for GPU and mini-batch
training, Batch SS-SOM, may open a good path to be explored. It also provides more integrability
of the model with other Deep Learning approaches, that commonly use the same framework and
structure, allowing the usage of the model as an intermediate layer in next versions, for example.

Lastly, ALTSS-SOM showed to be very effective for clustering tasks solely likewise for
classification. Therefore, this set of propositions is the most important contribution of this work.

7.2.1 Published Papers

During the development of this dissertation, the article related to the model SS-SOM,
was published in the 2018 International Joint Conference on Neural Networks (IJCNN), at the
2018 Institute of Electrical and Electronics Engineers (IEEE) World Congress on Computational
Intelligence (WCCI).

� P. H. Braga and H. F. Bassani, “A semi-supervised self-organizing map for clustering
and classification,” in 2018 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2018, pp. 1–8.

Also, another paper related to the model ALTSS-SOM was accepted for publication in
the 2019 IJCNN.

� P. H. Braga and H. F. Bassani, “A Semi-Supervised Self-Organizing Map with Adap-
tive Local Thresholds,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019.

7.3 LIMITATIONS OF THE MODELS

Despite the efforts made in proposing the models, some points have not yet been ade-
quately addressed, and need to be taken into consideration in the future.

First, the experiments conducted on this Dissertation concerned the same labels for both
training and testing (for classification tasks). Therefore, it may be necessary to extend the studies
to evaluate how the models behave in scenarios where more generalization power is needed, such
as in Robotics, where new categories of elements may frequently arise.

Second, the ALTSS-SOM was not stressed as much to verify its full subspace clustering
capabilities, once the experiments with simulated data were not conducted on time. For example,
it was not verified if ALTSS-SOM is truly robust to noise. However, it showed to be good in a
great variety of applications.
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Finally, even though with some optimizations performed to provide a more efficient
computation of the operations, it is necessary to analyze different forms to allow SOM-based
models to make use of the great computational power and parallelism provided by GPU devices.
It must be considered to work around the sequential operations necessary for SOM-based models
to work, such as the nodes update for each input pattern when training in batch, which make
some applications unfeasible.

7.4 FUTURE WORK

Because this work comprises several proposals, a large amount of possibilities arises.
However, it is possible to briefly compile each of the following points to be explored in a close
future:

� Develop an adequate stop criterion to reduce the training time of all proposed models.

� Use the unsupervised error to build a model with more than one layer.

� Define a hierarchical approach to provide better exploitation of the data statistics and
to increase the abstraction level autonomously.

� The connection between the nodes can take into account the proximity and not only
its subspaces and classes.

� Adjust the models for online learning. To achieve this, it is necessary to change the
node removal to consider cases of not observing data in some clusters for a given
time

� With a small change, SS-SOM, ALTSS-SOM and consequently the Batch SS-SOM
can incorporate reinforcement learning, thus being capable of switching between
three different learning approaches, to exploit several forms of information available.

� Explore in more detail the transfer learning techniques with the developed models,
especially the ALTSS-SOM that was not taken into account in such application.

� Optimize the Batch SS-SOM with more recent deep learning techniques to achieve
better results.

� Study the computational complexity of the models and propose proper optimizations.
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